Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).
Regev, A. et al. The Human Cell Atlas achromatic paper. Preprint astatine arXiv https://doi.org/10.48550/arXiv.1810.05192 (2018).
Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2 introduction genes crossed tissues and demographics. Nat. Med. 27, 546–559 (2021).
Ziegler, C. G. K. et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated cistron successful quality airway epithelial cells and is detected successful circumstantial compartment subsets crossed tissues. Cell 181, 1016–1035(2020).
Sungnak, W. et al. SARS-CoV-2 introduction factors are highly expressed successful nasal epithelial cells unneurotic with innate immune genes. Nat. Med. 26, 681–687 (2020).
Delorey, T. M. et al. COVID-19 insubstantial atlases uncover SARS-CoV-2 pathology and cellular targets. Nature 595, 107–113 (2021).
Melms, J. C. et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 595, 114–119 (2021).
Montoro, D. T. et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560, 319–324 (2018).
Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).
Elmentaite, R. et al. Cells of the quality intestinal tract mapped crossed abstraction and time. Nature 597, 250–255 (2021).
Drokhlyansky, E. et al. The quality and rodent enteric tense strategy astatine single-cell resolution. Cell 182, 1606–1622 (2020).
Jardine, L. et al. Blood and immune improvement successful quality fetal bony marrow and Down syndrome. Nature 598, 327–331 (2021).
Krenkel, O., Hundertmark, J., Ritz, T. P., Weiskirchen, R. & Tacke, F. Single compartment RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts successful liver fibrosis. Cells 8, 503 (2019).
He, H. et al. Single-cell transcriptome investigation of quality tegument identifies caller fibroblast subpopulation and enrichment of immune subsets successful atopic dermatitis. J. Allergy Clin. Immun. 145, 1615–1628 (2020).
Liu, Y. et al. Classification of quality chronic inflammatory tegument illness based connected single-cell immune profiling. Sci. Immunol. 7, eabl9165 (2022).
Wei, K. et al. Notch signaling drives synovial fibroblast individuality and arthritis pathology. Nature 582, 259–264 (2020).
Arazi, A. et al. The immune compartment scenery successful kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).
Hua, X. et al. Single-cell RNA sequencing to dissect the immunological web of autoimmune myocarditis. Circulation 142, 384–400 (2020).
Liu, J. et al. Single-cell RNA sequencing of psoriatic tegument identifies pathogenic TC17 compartment subsets and reveals distinctions betwixt CD8+ T cells successful autoimmunity and cancer. J. Allergy Clin. Immun. 147, 2370–2380 (2021).
Belonwu, S. A. et al. Bioinformatics investigation of publically disposable single-nuclei transcriptomics alzheimer’s illness datasets reveals APOE genotype-specific changes crossed compartment types successful 2 encephalon regions. Front Aging Neurosci. 14, 749991 (2022).
Hammond, T. R. et al. Single-cell RNA sequencing of microglia passim the rodent lifespan and successful the injured encephalon reveals analyzable cell-state changes. Immunity 50, 253–271 (2019).
Wang, P. et al. Global characterization of peripheral B cells successful Parkinson’s illness by single-cell RNA and BCR sequencing. Front. Immunol. 13, 814239 (2022).
Lampinen, R. et al. Single-cell RNA-seq investigation of olfactory mucosal cells of Alzheimer’s illness patients. Cells 11, 676 (2022).
Braga, F. A. V. et al. A cellular census of quality lungs identifies caller compartment states successful wellness and successful asthma. Nat. Med. 25, 1153–1163 (2019).
Deng, C.-C. et al. Single-cell RNA-seq reveals fibroblast heterogeneity and accrued mesenchymal fibroblasts successful quality fibrotic tegument diseases. Nat. Commun. 12, 3709 (2021).
Kobayashi, S. et al. Integrated bulk and single-cell RNA-sequencing identified disease-relevant monocytes and a cistron web module underlying systemic sclerosis. J. Autoimmun. 116, 102547 (2021).
Menon, M. et al. Single-cell transcriptomic atlas of the quality retina identifies compartment types associated with age-related macular degeneration. Nat. Commun. 10, 4902 (2019).
Hill, M. C. et al. Integrated multi-omic characterization of congenital bosom disease. Nature 608, 181–191 (2022).
Smillie, C. S. et al. Intra- and Inter-cellular rewiring of the quality colon during ulcerative colitis. Cell 178, 714–730 (2019).
Zhang, F. & Lupski, J. R. Non-coding familial variants successful quality disease. Hum. Mol. Genet 24, R102–R110 (2015).
Dimitriu, M. A., Lazar-Contes, I., Roszkowski, M. & Mansuy, I. M. Single-cell multiomics techniques: from conception to applications. Front. Cell Dev. Biol. 10, 854317 (2022).
Wang, S. K. et al. Single-cell multiome of the quality retina and heavy learning nominate causal variants successful analyzable oculus diseases. Cell Genom. 2, 100164 (2022).
Ashton, J. J. et al. Identification of variants successful genes associated with single-gene inflammatory bowel illness by whole-exome sequencing. Inflamm. Bowel Dis. 22, 2317–2327 (2016).
Jagadeesh, K. A. et al. Identifying disease-critical compartment types and cellular processes by integrating single-cell RNA-sequencing and quality genetics. Nat. Genet. 54, 1479–1492 (2022).
Eraslan, G. et al. Single-nucleus cross-tissue molecular notation maps toward knowing illness cistron function. Science 376, eabl4290 (2022).
Tabula Sapiens Consortium et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).
Conde, C. D. et al. Cross-tissue immune compartment investigation reveals tissue-specific features successful humans. Science 376, eabl5197 (2022).
Suo, C. et al. Mapping the processing quality immune strategy crossed organs. Science 376, eabo0510 (2022).
Bolton, C. et al. An integrated taxonomy for monogenic inflammatory bowel disease. Gastroenterology 162, 859–876 (2022).
Buechler, M. B. et al. Cross-tissue enactment of the fibroblast lineage. Nature 593, 575–579 (2021).
Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes successful 4 chronic inflammatory diseases. Med 3, (2022).
Martin, J. C. et al. Single-cell investigation of Crohn’s illness lesions identifies a pathogenic cellular module associated with absorption to anti-TNF therapy. Cell 178, 1493–1508 (2019).
Mostafavi, S. et al. A molecular web of the aging quality encephalon provides insights into the pathology and cognitive diminution of Alzheimer’s disease. Nat. Neurosci. 21, 811–819 (2018).
Adams, T. S. et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident compartment populations successful idiopathic pulmonary fibrosis. Sci. Adv. 6, eaba1983 (2020).
Schupp, J. C. et al. Integrated single-cell atlas of endothelial cells of the quality lung. Circulation 144, 286–302 (2021).
Chaffin, M. et al. Single-nucleus profiling of quality dilated and hypertrophic cardiomyopathy. Nature 608, 174–180 (2022).
Vickovic, S. et al. Three-dimensional spatial transcriptomics uncovers compartment benignant localizations successful the quality rheumatoid arthritis synovium. Commun. Biol. 5, 129 (2022).
Marshall, J. L. et al. High-resolution Slide-seqV2 spatial transcriptomics enables find of disease-specific compartment neighborhoods and pathways. iScience 25, 104097 (2022).
Wu, H. et al. Mapping the single-cell transcriptomic effect of murine diabetic kidney illness to therapies. Cell Metab. 34, 1064–1078 (2022).
Keren-Shaul, H. et al. A unsocial microglia benignant associated with restricting improvement of alzheimer’s disease. Cell 169, 1276–1290 (2017).
Ha, C. W. Y. et al. Translocation of viable gut microbiota to mesenteric adipose drives enactment of creeping abdominous successful humans. Cell 183, 666–683 (2020).
Reynolds, G. et al. Developmental compartment programs are co-opted successful inflammatory tegument disease. Science 371, eaba6500 (2021).
Petukhov, V. et al. Case–control investigation of single-cell RNA-seq studies. Preprint astatine biorXiv https://doi.org/10.1101/2022.03.15.484475 (2022).
Jerby-Arnon, L. & Regev, A. DIALOGUE maps multicellular programs successful insubstantial from single-cell oregon spatial transcriptomics data. Nat. Biotechnol. 40, 1467–1477 (2022).
Fischer, D. S., Schaar, A. C. & Theis, F. J. Modeling intercellular connection successful tissues utilizing spatial graphs of cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01467-z (2022).
Maier, B. et al. A conserved dendritic-cell regulatory programme limits antitumour immunity. Nature 580, 257–262 (2020).
Bischoff, P. et al. Single-cell RNA sequencing reveals chiseled tumor microenvironmental patterns successful lung adenocarcinoma. Oncogene 40, 6748–6758 (2021).
Jerby-Arnon, L. et al. A crab compartment programme promotes T compartment exclusion and absorption to checkpoint blockade. Cell 175, 984–997 (2018).
Yang, R. et al. Distinct epigenetic features of tumor-reactive CD8+ T cells successful colorectal crab patients revealed by genome-wide DNA methylation analysis. Genome Biol. 21, 2 (2019).
Mathewson, N. D. et al. Inhibitory CD161 receptor identified successful glioma-infiltrating T cells by single-cell analysis. Cell 184, 1281–1298 (2021).
Lavin, Y. et al. Innate immune scenery successful aboriginal lung adenocarcinoma by paired single-cell analyses. Cell 169, 750–765 (2017).
Klemm, F. et al. Interrogation of the microenvironmental scenery successful encephalon tumors reveals disease-specific alterations of immune cells. Cell 181, 1643–1660 (2020).
Jerby-Arnon, L. et al. Opposing immune and familial mechanisms signifier oncogenic programs successful synovial sarcoma. Nat. Med 27, 289–300 (2021).
Pelka, K. et al. Spatially organized multicellular immune hubs successful quality colorectal cancer. Cell 184, 4734–4752 (2021).
Timperi, E. et al. Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression successful bosom cancer. Cancer Res. 82, 3291–3306 (2022).
Pradhan, R. N., Krishnamurty, A. T., Fletcher, A. L., Turley, S. J. & Müller, S. A bird’s oculus presumption of fibroblast heterogeneity: a pan‐disease, pan‐cancer perspective. Immunol. Rev. 302, 299–320 (2021).
Huang, S. et al. Lymph nodes are innervated by a unsocial colonisation of sensory neurons with immunomodulatory potential. Cell 184, 441–459 (2021).
Li, R. et al. Multi-regional characterisation of renal compartment carcinoma and microenvironment astatine azygous compartment resolution. Preprint astatine biorXiv https://doi.org/10.1101/2021.11.12.468373 (2021).
Braun, D. A. et al. Progressive immune dysfunction with advancing illness signifier successful renal compartment carcinoma. Cancer Cell 39, 632–648 (2021).
Rozenblatt-Rosen, O. et al. The quality tumor atlas network: charting tumor transitions crossed abstraction and clip astatine single-cell resolution. Cell 181, 236–249 (2020).
Obradovic, A. et al. Single-cell macromolecule enactment investigation identifies recurrence-associated renal tumor macrophages. Cell 184, 2988–3005 (2021).
Hwang, W. L. et al. Single-nucleus and spatial transcriptome profiling of pancreatic crab identifies multicellular dynamics associated with neoadjuvant treatment. Nat. Genet. 54, 1178–1191 (2022).
Sfakianos, J. P. et al. Epithelial plasticity tin make multi-lineage phenotypes successful quality and murine bladder cancers. Nat. Commun. 11, 2540 (2020).
Young, M. D. et al. Single-cell transcriptomes from quality kidneys uncover the cellular individuality of renal tumors. Science 361, 594–599 (2018).
Young, M. D. et al. Single compartment derived mRNA signals crossed quality kidney tumors. Nat. Commun. 12, 3896 (2021).
Li, H. et al. Dysfunctional CD8 T cells signifier a proliferative, dynamically regulated compartment wrong quality melanoma. Cell 181, 747 (2020).
Sade-Feldman, M. et al. Defining T compartment states associated with effect to checkpoint immunotherapy successful melanoma. Cell 176, 404 (2019).
Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer–immunity cycle. Immunity 39, 1–10 (2013).
Luoma, A. M. et al. Tissue-resident representation and circulating T cells are aboriginal responders to pre-surgical crab immunotherapy. Cell 185, 2918–2935 (2022).
Nathan, A. et al. Single-cell eQTL models uncover dynamic T compartment authorities dependence of illness loci. Nature 606, 120–128 (2022).
Perez, R. K. et al. Single-cell RNA-seq reveals compartment type–specific molecular and familial associations to lupus. Science 376, eabf1970 (2022).
Wu, T. D. et al. Peripheral T compartment enlargement predicts tumour infiltration and objective response. Nature 579, 274–278 (2020).
Weitz, P. et al. Transcriptome-wide prediction of prostate crab cistron look from histopathology images utilizing co-expression-based convolutional neural networks. Bioinformatics 38, 3462–3469 (2022).
Garcia-Alonso, L. et al. Mapping the temporal and spatial dynamics of the quality endometrium successful vivo and successful vitro. Nat. Genet. 53, 1698–1711 (2021).
Schiller, H. B. et al. The quality lung compartment atlas: a high-resolution notation representation of the quality lung successful wellness and disease. Am. J. Resp. Cell Mol. 61, 31–41 (2019).
Dyring-Andersen, B. et al. Spatially and cell-type resolved quantitative proteomic atlas of steadfast quality skin. Nat. Commun. 11, 5587 (2020).
Sinjab, A. et al. Resolving the spatial and cellular architecture of lung adenocarcinoma by multiregion single-cell sequencing. Cancer Discov. 11, 2506–2523 (2021).
Datar, I. et al. Expression investigation and value of PD-1, LAG-3, and TIM-3 successful quality non–small compartment lung crab utilizing spatially resolved and multiparametric single-cell analysis. Clin. Cancer Res. 25, 4663–4673 (2019).
Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat. Methods 18, 1352–1362 (2021).
Achim, K. et al. High-throughput spatial mapping of single-cell RNA-seq information to insubstantial of origin. Nat. Biotechnol. 33, 503–509 (2015).
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell cistron look data. Nat. Biotechnol. 33, 495–502 (2015).
Kleshchevnikov, V. et al. Cell2location maps fine-grained compartment types successful spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).
Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals insubstantial architecture successful pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342 (2020).
Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular insubstantial biology. Nat. Biotechnol. 40, 308–318 (2022).
Fu, Y. et al. Pan-cancer computational histopathology reveals mutations, tumor creation and prognosis. Nat. Cancer 1, 800–810 (2020).
Parker, K. R. et al. Single-cell analyses place encephalon mural cells expressing CD19 arsenic imaginable off-tumor targets for CAR-T immunotherapies. Cell 183, 126–142 (2020).
Han, L. et al. Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature 604, 723–731 (2022).
Yuen, K. C. et al. High systemic and tumor-associated IL-8 correlates with reduced objective payment of PD-L1 blockade. Nat. Med. 26, 693–698 (2020).
Bi, K. et al. Tumor and immune reprogramming during immunotherapy successful precocious renal compartment carcinoma. Cancer Cell 39, 649–661 (2021).
Maynard, A. et al. Therapy-induced improvement of quality lung crab revealed by single-cell RNA sequencing. Cell 182, 1232–1251 (2020).
Bielecki, P. et al. Skin-resident innate lymphoid cells converge connected a pathogenic effector state. Nature 592, 128–132 (2021).
Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled familial screens. Cell 167, 1853–1866 (2016).
Ji, Y., Lotfollahi, M., Wolf, F. A. & Theis, F. J. Machine learning for perturbational single-cell omics. Cell Syst. 12, 522–537 (2021).
Adamson, B. et al. A multiplexed single-cell CRISPR screening level enables systematic dissection of the unfolded macromolecule response. Cell 167, 1867–1882 (2016).
Frangieh, C. J. et al. Multimodal pooled Perturb-CITE-seq screens successful diligent models specify mechanisms of crab immune evasion. Nat. Genet. 53, 332–341 (2021).
Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, cistron look and macromolecule levels successful azygous cells. Nat. Biotechnol. 39, 1246–1258 (2021).
Replogle, J. M. et al. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575 (2022).
Gasperini, M. et al. A genome-wide model for mapping cistron regularisation via cellular familial screens. Cell 176, 1516 (2019).
Ursu, O. et al. Massively parallel phenotyping of coding variants successful crab with Perturb-seq. Nat. Biotechnol. 40, 896–905 (2022).
Jin, X. et al. In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism hazard genes. Science 370, eaaz6063 (2020).
Paulsen, B. et al. Autism genes converge connected asynchronous improvement of shared neuron classes. Nature 602, 268–273 (2022).
Srivatsan, S. R. et al. Massively multiplex chemic transcriptomics astatine single-cell resolution. Science 367, 45–51 (2020).
McFarland, J. M. et al. Multiplexed single-cell transcriptional effect profiling to specify crab vulnerabilities and therapeutic mechanics of action. Nat. Commun. 11, 4296 (2020).
Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts single-cell perturbation responses. Nat. Methods 16, 715–721 (2019).
Lotfollahi, M. et al. Learning interpretable cellular responses to analyzable perturbations successful high-throughput screens. Preprint astatine https://doi.org/10.1101/2021.04.14.439903 (2021).
Roohani, Y., Huang, K. & Leskovec, J. GEARS: pedicting transcriptional outcomes of caller multi-gene perturbations. Preprint astatine biorXiv https://doi.org/10.1101/2022.07.12.499735 (2022).
Bock, C. et al. The organoid compartment atlas. Nat. Biotechnol. 39, 13–17 (2021).
Manno, G. L. et al. Molecular diverseness of midbrain improvement successful mouse, human, and stem cells. Cell 167, 566–5802016).
Velasco, S. et al. Individual encephalon organoids reproducibly signifier compartment diverseness of the quality cerebral cortex. Nature 570, 523–527 (2019).
Fleck, J. S. et al. Inferring and perturbing compartment destiny regulomes successful quality cerebral organoids. Nature https://doi.org/10.1038/s41586-022-05279-8 (2022).
Holloway, E. M. et al. Mapping improvement of the quality intestinal niche astatine single-cell resolution. Cell Stem Cell 28, 568–580 (2021).
Mead, B. E. et al. Screening for modulators of the cellular creation of gut epithelia via organoid models of intestinal stem compartment differentiation. Nat. Biomed. Eng. 6, 476–494 (2022).
Beumer, J. et al. High-Resolution mRNA and secretome atlas of quality enteroendocrine cells. Cell 181, 1291–1306 (2020).
Todd, L. et al. Efficient stimulation of retinal regeneration from Müller glia successful big mice utilizing combinations of proneural bHLH transcription factors. Cell Rep. 37, 109857 (2021).
Hoang, T. et al. Gene regulatory networks controlling vertebrate retinal regeneration. Science 370, eabb8598 (2020).
Freimer, J. W. et al. Systematic find and perturbation of regulatory genes successful quality T cells reveals the architecture of immune networks. Nat. Genet. 54, 1133–1144 (2022).
Belk, J. A. et al. Genome-wide CRISPR screens of T compartment exhaustion place chromatin remodeling factors that bounds T compartment persistence. Cancer Cell 40, 768–786 (2022).
Schumann, K. et al. Functional CRISPR dissection of cistron networks controlling quality regulatory T compartment identity. Nat. Immunol. 21, 1456–1466 (2020).
Bai, Z. et al. Single-cell multiomics dissection of basal and antigen-specific activation states of CD19-targeted CAR T cells. J. Immunother. Cancer 9, e002328 (2021).
Lynn, R. C. et al. c-Jun overexpression successful CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).
Majumder, P. P., Mhlanga, M. M. & Shalek, A. K. The Human Cell atlas and equity: lessons learned. Nat. Med 26, 1509–1511 (2020).
Majumder, P. et al. How to guarantee the Human compartment atlas benefits humanity. Nature 605, 30–30 (2022).
Chung, H. et al. SnFFPE-Seq: towards scalable azygous nucleus RNA-seq of formalin-fixed paraffin-embedded (FFPE) tissue. Preprint astatine biorXiv https://doi.org/10.1101/2022.08.25.505257 (2022).
Vallejo, A. F. et al. snPATHO-seq: unlocking the FFPE archives for azygous nucleus RNA profiling. Preprint astatine biorXiv https://doi.org/10.1101/2022.08.23.505054 (2022).
Rood, J. E. & Regev, A. The bequest of the quality genome project. Science 373, 1442–1443 (2021).
Simmons, S. K. et al. Mostly earthy sequencing-by-synthesis for scRNA-seq utilizing Ultima sequencing. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01452-6 (2022).
Moffitt, J. R., Lundberg, E. & Heyn, H. The emerging scenery of spatial profiling technologies. Nat. Rev. Genet. https://doi.org/10.1038/s41576-022-00515-3 (2022).
Teichmann, S. & Regev, A. The web effect: studying COVID-19 pathology with the Human Cell Atlas. Nat. Rev. Mol. Cell Bio. 21, 415–416 (2020).
Zou, X. et al. Single-cell RNA-seq information investigation connected the receptor ACE2 look reveals the imaginable hazard of antithetic quality organs susceptible to 2019-nCoV infection. Front Med.14, 185–192 (2020).
Qi, F., Qian, S., Zhang, S. & Zhang, Z. Single compartment RNA sequencing of 13 quality tissues place compartment types and receptors of quality coronaviruses. Biochem. Biophys. Res. Co. 526, 135–140 (2020).
Lukassen, S. et al. SARS‐CoV‐2 receptor ACE2 and TMPRSS2 are chiefly expressed successful bronchial transient secretory cells. EMBO J. 39, e105114 (2020).
Huang, N. et al. SARS-CoV-2 corruption of the oral cavity and saliva. Nat. Med. 27, 892–903 (2021).
Meng, B. et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 603, 706–714 (2022).
Fullard, J. F. et al. Single-nucleus transcriptome investigation of quality encephalon immune effect successful patients with terrible COVID-19. Genome Med. 13, 118 (2021).
Rendeiro, A. F. et al. The spatial scenery of lung pathology during COVID-19 progression. Nature 593, 564–569 (2021).
Pujadas, E. et al. Molecular profiling of COVID-19 autopsies uncovers caller illness mechanisms. Am. J. Pathol. 191, 2064–2071 (2021).
Ziegler, C. G. K. et al. Impaired section intrinsic immunity to SARS-CoV-2 corruption successful terrible COVID-19. Cell 184, 4713–4733 (2021).
Ren, X. et al. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell 184, 1895–1913 (2021).
Bernardes, J. P. et al. Longitudinal multi-omics analyses place responses of megakaryocytes, erythroid cells, and plasmablasts arsenic hallmarks of terrible COVID-19. Immunity 53, 1296–1314 (2020).
Fischer, D. S. et al. Single-cell RNA sequencing reveals ex vivo signatures of SARS-CoV-2-reactive T cells done ‘reverse phenotyping’. Nat. Commun. 12, 4515 (2021).
Trump, S. et al. Hypertension delays viral clearance and exacerbates airway hyperinflammation successful patients with COVID-19. Nat. Biotechnol. 39, 705–716 (2021).
Scheid, J. F. et al. B compartment genomics down cross-neutralization of SARS-CoV-2 variants and SARS-CoV. Cell 184, 3205–3221 (2021).
Wilk, A. J. et al. A single-cell atlas of the peripheral immune effect successful patients with terrible COVID-19. Nat. Med. 26, 1070–1076 (2020).
Stephenson, E. et al. Single-cell multi-omics investigation of the immune effect successful COVID-19. Nat. Med. 27, 904–916 (2021).
Arunachalam, P. S. et al. Systems vaccinology of the BNT162b2 mRNA vaccine successful humans. Nature 596, 410–416 (2021).