Impact of the Human Cell Atlas on medicine - Nature.com

1 year ago 52
  • Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Regev, A. et al. The Human Cell Atlas achromatic paper. Preprint astatine arXiv https://doi.org/10.48550/arXiv.1810.05192 (2018).

  • Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2 introduction genes crossed tissues and demographics. Nat. Med. 27, 546–559 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler, C. G. K. et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated cistron successful quality airway epithelial cells and is detected successful circumstantial compartment subsets crossed tissues. Cell 181, 1016–1035(2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sungnak, W. et al. SARS-CoV-2 introduction factors are highly expressed successful nasal epithelial cells unneurotic with innate immune genes. Nat. Med. 26, 681–687 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delorey, T. M. et al. COVID-19 insubstantial atlases uncover SARS-CoV-2 pathology and cellular targets. Nature 595, 107–113 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melms, J. C. et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 595, 114–119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montoro, D. T. et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560, 319–324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmentaite, R. et al. Cells of the quality intestinal tract mapped crossed abstraction and time. Nature 597, 250–255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drokhlyansky, E. et al. The quality and rodent enteric tense strategy astatine single-cell resolution. Cell 182, 1606–1622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jardine, L. et al. Blood and immune improvement successful quality fetal bony marrow and Down syndrome. Nature 598, 327–331 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krenkel, O., Hundertmark, J., Ritz, T. P., Weiskirchen, R. & Tacke, F. Single compartment RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts successful liver fibrosis. Cells 8, 503 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, H. et al. Single-cell transcriptome investigation of quality tegument identifies caller fibroblast subpopulation and enrichment of immune subsets successful atopic dermatitis. J. Allergy Clin. Immun. 145, 1615–1628 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. et al. Classification of quality chronic inflammatory tegument illness based connected single-cell immune profiling. Sci. Immunol. 7, eabl9165 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Wei, K. et al. Notch signaling drives synovial fibroblast individuality and arthritis pathology. Nature 582, 259–264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arazi, A. et al. The immune compartment scenery successful kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua, X. et al. Single-cell RNA sequencing to dissect the immunological web of autoimmune myocarditis. Circulation 142, 384–400 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Liu, J. et al. Single-cell RNA sequencing of psoriatic tegument identifies pathogenic TC17 compartment subsets and reveals distinctions betwixt CD8+ T cells successful autoimmunity and cancer. J. Allergy Clin. Immun. 147, 2370–2380 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Belonwu, S. A. et al. Bioinformatics investigation of publically disposable single-nuclei transcriptomics alzheimer’s illness datasets reveals APOE genotype-specific changes crossed compartment types successful 2 encephalon regions. Front Aging Neurosci. 14, 749991 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond, T. R. et al. Single-cell RNA sequencing of microglia passim the rodent lifespan and successful the injured encephalon reveals analyzable cell-state changes. Immunity 50, 253–271 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Wang, P. et al. Global characterization of peripheral B cells successful Parkinson’s illness by single-cell RNA and BCR sequencing. Front. Immunol. 13, 814239 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lampinen, R. et al. Single-cell RNA-seq investigation of olfactory mucosal cells of Alzheimer’s illness patients. Cells 11, 676 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braga, F. A. V. et al. A cellular census of quality lungs identifies caller compartment states successful wellness and successful asthma. Nat. Med. 25, 1153–1163 (2019).

    Article  Google Scholar 

  • Deng, C.-C. et al. Single-cell RNA-seq reveals fibroblast heterogeneity and accrued mesenchymal fibroblasts successful quality fibrotic tegument diseases. Nat. Commun. 12, 3709 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, S. et al. Integrated bulk and single-cell RNA-sequencing identified disease-relevant monocytes and a cistron web module underlying systemic sclerosis. J. Autoimmun. 116, 102547 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Menon, M. et al. Single-cell transcriptomic atlas of the quality retina identifies compartment types associated with age-related macular degeneration. Nat. Commun. 10, 4902 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill, M. C. et al. Integrated multi-omic characterization of congenital bosom disease. Nature 608, 181–191 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Smillie, C. S. et al. Intra- and Inter-cellular rewiring of the quality colon during ulcerative colitis. Cell 178, 714–730 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, F. & Lupski, J. R. Non-coding familial variants successful quality disease. Hum. Mol. Genet 24, R102–R110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitriu, M. A., Lazar-Contes, I., Roszkowski, M. & Mansuy, I. M. Single-cell multiomics techniques: from conception to applications. Front. Cell Dev. Biol. 10, 854317 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, S. K. et al. Single-cell multiome of the quality retina and heavy learning nominate causal variants successful analyzable oculus diseases. Cell Genom. 2, 100164 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashton, J. J. et al. Identification of variants successful genes associated with single-gene inflammatory bowel illness by whole-exome sequencing. Inflamm. Bowel Dis. 22, 2317–2327 (2016).

    Article  PubMed  Google Scholar 

  • Jagadeesh, K. A. et al. Identifying disease-critical compartment types and cellular processes by integrating single-cell RNA-sequencing and quality genetics. Nat. Genet. 54, 1479–1492 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Eraslan, G. et al. Single-nucleus cross-tissue molecular notation maps toward knowing illness cistron function. Science 376, eabl4290 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabula Sapiens Consortium et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  Google Scholar 

  • Conde, C. D. et al. Cross-tissue immune compartment investigation reveals tissue-specific features successful humans. Science 376, eabl5197 (2022).

  • Suo, C. et al. Mapping the processing quality immune strategy crossed organs. Science 376, eabo0510 (2022).

  • Bolton, C. et al. An integrated taxonomy for monogenic inflammatory bowel disease. Gastroenterology 162, 859–876 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Buechler, M. B. et al. Cross-tissue enactment of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes successful 4 chronic inflammatory diseases. Med 3, (2022).

  • Martin, J. C. et al. Single-cell investigation of Crohn’s illness lesions identifies a pathogenic cellular module associated with absorption to anti-TNF therapy. Cell 178, 1493–1508 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostafavi, S. et al. A molecular web of the aging quality encephalon provides insights into the pathology and cognitive diminution of Alzheimer’s disease. Nat. Neurosci. 21, 811–819 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams, T. S. et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident compartment populations successful idiopathic pulmonary fibrosis. Sci. Adv. 6, eaba1983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schupp, J. C. et al. Integrated single-cell atlas of endothelial cells of the quality lung. Circulation 144, 286–302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaffin, M. et al. Single-nucleus profiling of quality dilated and hypertrophic cardiomyopathy. Nature 608, 174–180 (2022).

  • Vickovic, S. et al. Three-dimensional spatial transcriptomics uncovers compartment benignant localizations successful the quality rheumatoid arthritis synovium. Commun. Biol. 5, 129 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall, J. L. et al. High-resolution Slide-seqV2 spatial transcriptomics enables find of disease-specific compartment neighborhoods and pathways. iScience 25, 104097 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, H. et al. Mapping the single-cell transcriptomic effect of murine diabetic kidney illness to therapies. Cell Metab. 34, 1064–1078 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Keren-Shaul, H. et al. A unsocial microglia benignant associated with restricting improvement of alzheimer’s disease. Cell 169, 1276–1290 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Ha, C. W. Y. et al. Translocation of viable gut microbiota to mesenteric adipose drives enactment of creeping abdominous successful humans. Cell 183, 666–683 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds, G. et al. Developmental compartment programs are co-opted successful inflammatory tegument disease. Science 371, eaba6500 (2021).

  • Petukhov, V. et al. Case–control investigation of single-cell RNA-seq studies. Preprint astatine biorXiv https://doi.org/10.1101/2022.03.15.484475 (2022).

  • Jerby-Arnon, L. & Regev, A. DIALOGUE maps multicellular programs successful insubstantial from single-cell oregon spatial transcriptomics data. Nat. Biotechnol. 40, 1467–1477 (2022).

  • Fischer, D. S., Schaar, A. C. & Theis, F. J. Modeling intercellular connection successful tissues utilizing spatial graphs of cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01467-z (2022).

  • Maier, B. et al. A conserved dendritic-cell regulatory programme limits antitumour immunity. Nature 580, 257–262 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bischoff, P. et al. Single-cell RNA sequencing reveals chiseled tumor microenvironmental patterns successful lung adenocarcinoma. Oncogene 40, 6748–6758 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jerby-Arnon, L. et al. A crab compartment programme promotes T compartment exclusion and absorption to checkpoint blockade. Cell 175, 984–997 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, R. et al. Distinct epigenetic features of tumor-reactive CD8+ T cells successful colorectal crab patients revealed by genome-wide DNA methylation analysis. Genome Biol. 21, 2 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathewson, N. D. et al. Inhibitory CD161 receptor identified successful glioma-infiltrating T cells by single-cell analysis. Cell 184, 1281–1298 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavin, Y. et al. Innate immune scenery successful aboriginal lung adenocarcinoma by paired single-cell analyses. Cell 169, 750–765 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klemm, F. et al. Interrogation of the microenvironmental scenery successful encephalon tumors reveals disease-specific alterations of immune cells. Cell 181, 1643–1660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jerby-Arnon, L. et al. Opposing immune and familial mechanisms signifier oncogenic programs successful synovial sarcoma. Nat. Med 27, 289–300 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelka, K. et al. Spatially organized multicellular immune hubs successful quality colorectal cancer. Cell 184, 4734–4752 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timperi, E. et al. Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression successful bosom cancer. Cancer Res. 82, 3291–3306 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Pradhan, R. N., Krishnamurty, A. T., Fletcher, A. L., Turley, S. J. & Müller, S. A bird’s oculus presumption of fibroblast heterogeneity: a pan‐disease, pan‐cancer perspective. Immunol. Rev. 302, 299–320 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Huang, S. et al. Lymph nodes are innervated by a unsocial colonisation of sensory neurons with immunomodulatory potential. Cell 184, 441–459 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Li, R. et al. Multi-regional characterisation of renal compartment carcinoma and microenvironment astatine azygous compartment resolution. Preprint astatine biorXiv https://doi.org/10.1101/2021.11.12.468373 (2021).

  • Braun, D. A. et al. Progressive immune dysfunction with advancing illness signifier successful renal compartment carcinoma. Cancer Cell 39, 632–648 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozenblatt-Rosen, O. et al. The quality tumor atlas network: charting tumor transitions crossed abstraction and clip astatine single-cell resolution. Cell 181, 236–249 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obradovic, A. et al. Single-cell macromolecule enactment investigation identifies recurrence-associated renal tumor macrophages. Cell 184, 2988–3005 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang, W. L. et al. Single-nucleus and spatial transcriptome profiling of pancreatic crab identifies multicellular dynamics associated with neoadjuvant treatment. Nat. Genet. 54, 1178–1191 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Sfakianos, J. P. et al. Epithelial plasticity tin make multi-lineage phenotypes successful quality and murine bladder cancers. Nat. Commun. 11, 2540 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young, M. D. et al. Single-cell transcriptomes from quality kidneys uncover the cellular individuality of renal tumors. Science 361, 594–599 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young, M. D. et al. Single compartment derived mRNA signals crossed quality kidney tumors. Nat. Commun. 12, 3896 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H. et al. Dysfunctional CD8 T cells signifier a proliferative, dynamically regulated compartment wrong quality melanoma. Cell 181, 747 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Sade-Feldman, M. et al. Defining T compartment states associated with effect to checkpoint immunotherapy successful melanoma. Cell 176, 404 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer–immunity cycle. Immunity 39, 1–10 (2013).

    Article  PubMed  Google Scholar 

  • Luoma, A. M. et al. Tissue-resident representation and circulating T cells are aboriginal responders to pre-surgical crab immunotherapy. Cell 185, 2918–2935 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Nathan, A. et al. Single-cell eQTL models uncover dynamic T compartment authorities dependence of illness loci. Nature 606, 120–128 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Perez, R. K. et al. Single-cell RNA-seq reveals compartment type–specific molecular and familial associations to lupus. Science 376, eabf1970 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, T. D. et al. Peripheral T compartment enlargement predicts tumour infiltration and objective response. Nature 579, 274–278 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Weitz, P. et al. Transcriptome-wide prediction of prostate crab cistron look from histopathology images utilizing co-expression-based convolutional neural networks. Bioinformatics 38, 3462–3469 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Alonso, L. et al. Mapping the temporal and spatial dynamics of the quality endometrium successful vivo and successful vitro. Nat. Genet. 53, 1698–1711 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiller, H. B. et al. The quality lung compartment atlas: a high-resolution notation representation of the quality lung successful wellness and disease. Am. J. Resp. Cell Mol. 61, 31–41 (2019).

    Article  CAS  Google Scholar 

  • Dyring-Andersen, B. et al. Spatially and cell-type resolved quantitative proteomic atlas of steadfast quality skin. Nat. Commun. 11, 5587 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinjab, A. et al. Resolving the spatial and cellular architecture of lung adenocarcinoma by multiregion single-cell sequencing. Cancer Discov. 11, 2506–2523 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datar, I. et al. Expression investigation and value of PD-1, LAG-3, and TIM-3 successful quality non–small compartment lung crab utilizing spatially resolved and multiparametric single-cell analysis. Clin. Cancer Res. 25, 4663–4673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat. Methods 18, 1352–1362 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Achim, K. et al. High-throughput spatial mapping of single-cell RNA-seq information to insubstantial of origin. Nat. Biotechnol. 33, 503–509 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell cistron look data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleshchevnikov, V. et al. Cell2location maps fine-grained compartment types successful spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals insubstantial architecture successful pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular insubstantial biology. Nat. Biotechnol. 40, 308–318 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Fu, Y. et al. Pan-cancer computational histopathology reveals mutations, tumor creation and prognosis. Nat. Cancer 1, 800–810 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Parker, K. R. et al. Single-cell analyses place encephalon mural cells expressing CD19 arsenic imaginable off-tumor targets for CAR-T immunotherapies. Cell 183, 126–142 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, L. et al. Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature 604, 723–731 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Yuen, K. C. et al. High systemic and tumor-associated IL-8 correlates with reduced objective payment of PD-L1 blockade. Nat. Med. 26, 693–698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi, K. et al. Tumor and immune reprogramming during immunotherapy successful precocious renal compartment carcinoma. Cancer Cell 39, 649–661 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maynard, A. et al. Therapy-induced improvement of quality lung crab revealed by single-cell RNA sequencing. Cell 182, 1232–1251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielecki, P. et al. Skin-resident innate lymphoid cells converge connected a pathogenic effector state. Nature 592, 128–132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled familial screens. Cell 167, 1853–1866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji, Y., Lotfollahi, M., Wolf, F. A. & Theis, F. J. Machine learning for perturbational single-cell omics. Cell Syst. 12, 522–537 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Adamson, B. et al. A multiplexed single-cell CRISPR screening level enables systematic dissection of the unfolded macromolecule response. Cell 167, 1867–1882 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frangieh, C. J. et al. Multimodal pooled Perturb-CITE-seq screens successful diligent models specify mechanisms of crab immune evasion. Nat. Genet. 53, 332–341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, cistron look and macromolecule levels successful azygous cells. Nat. Biotechnol. 39, 1246–1258 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Replogle, J. M. et al. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasperini, M. et al. A genome-wide model for mapping cistron regularisation via cellular familial screens. Cell 176, 1516 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Ursu, O. et al. Massively parallel phenotyping of coding variants successful crab with Perturb-seq. Nat. Biotechnol. 40, 896–905 (2022).

  • Jin, X. et al. In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism hazard genes. Science 370, eaaz6063 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsen, B. et al. Autism genes converge connected asynchronous improvement of shared neuron classes. Nature 602, 268–273 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivatsan, S. R. et al. Massively multiplex chemic transcriptomics astatine single-cell resolution. Science 367, 45–51 (2020).

    Article  CAS  PubMed  Google Scholar 

  • McFarland, J. M. et al. Multiplexed single-cell transcriptional effect profiling to specify crab vulnerabilities and therapeutic mechanics of action. Nat. Commun. 11, 4296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts single-cell perturbation responses. Nat. Methods 16, 715–721 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Lotfollahi, M. et al. Learning interpretable cellular responses to analyzable perturbations successful high-throughput screens. Preprint astatine https://doi.org/10.1101/2021.04.14.439903 (2021).

  • Roohani, Y., Huang, K. & Leskovec, J. GEARS: pedicting transcriptional outcomes of caller multi-gene perturbations. Preprint astatine biorXiv https://doi.org/10.1101/2022.07.12.499735 (2022).

  • Bock, C. et al. The organoid compartment atlas. Nat. Biotechnol. 39, 13–17 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Manno, G. L. et al. Molecular diverseness of midbrain improvement successful mouse, human, and stem cells. Cell 167, 566–5802016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Velasco, S. et al. Individual encephalon organoids reproducibly signifier compartment diverseness of the quality cerebral cortex. Nature 570, 523–527 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleck, J. S. et al. Inferring and perturbing compartment destiny regulomes successful quality cerebral organoids. Nature https://doi.org/10.1038/s41586-022-05279-8 (2022).

  • Holloway, E. M. et al. Mapping improvement of the quality intestinal niche astatine single-cell resolution. Cell Stem Cell 28, 568–580 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Mead, B. E. et al. Screening for modulators of the cellular creation of gut epithelia via organoid models of intestinal stem compartment differentiation. Nat. Biomed. Eng. 6, 476–494 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beumer, J. et al. High-Resolution mRNA and secretome atlas of quality enteroendocrine cells. Cell 181, 1291–1306 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Todd, L. et al. Efficient stimulation of retinal regeneration from Müller glia successful big mice utilizing combinations of proneural bHLH transcription factors. Cell Rep. 37, 109857 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang, T. et al. Gene regulatory networks controlling vertebrate retinal regeneration. Science 370, eabb8598 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freimer, J. W. et al. Systematic find and perturbation of regulatory genes successful quality T cells reveals the architecture of immune networks. Nat. Genet. 54, 1133–1144 (2022).

  • Belk, J. A. et al. Genome-wide CRISPR screens of T compartment exhaustion place chromatin remodeling factors that bounds T compartment persistence. Cancer Cell 40, 768–786 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Schumann, K. et al. Functional CRISPR dissection of cistron networks controlling quality regulatory T compartment identity. Nat. Immunol. 21, 1456–1466 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai, Z. et al. Single-cell multiomics dissection of basal and antigen-specific activation states of CD19-targeted CAR T cells. J. Immunother. Cancer 9, e002328 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynn, R. C. et al. c-Jun overexpression successful CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majumder, P. P., Mhlanga, M. M. & Shalek, A. K. The Human Cell atlas and equity: lessons learned. Nat. Med 26, 1509–1511 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Majumder, P. et al. How to guarantee the Human compartment atlas benefits humanity. Nature 605, 30–30 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Chung, H. et al. SnFFPE-Seq: towards scalable azygous nucleus RNA-seq of formalin-fixed paraffin-embedded (FFPE) tissue. Preprint astatine biorXiv https://doi.org/10.1101/2022.08.25.505257 (2022).

  • Vallejo, A. F. et al. snPATHO-seq: unlocking the FFPE archives for azygous nucleus RNA profiling. Preprint astatine biorXiv https://doi.org/10.1101/2022.08.23.505054 (2022).

  • Rood, J. E. & Regev, A. The bequest of the quality genome project. Science 373, 1442–1443 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Simmons, S. K. et al. Mostly earthy sequencing-by-synthesis for scRNA-seq utilizing Ultima sequencing. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01452-6 (2022).

  • Moffitt, J. R., Lundberg, E. & Heyn, H. The emerging scenery of spatial profiling technologies. Nat. Rev. Genet. https://doi.org/10.1038/s41576-022-00515-3 (2022).

  • Teichmann, S. & Regev, A. The web effect: studying COVID-19 pathology with the Human Cell Atlas. Nat. Rev. Mol. Cell Bio. 21, 415–416 (2020).

    Article  CAS  Google Scholar 

  • Zou, X. et al. Single-cell RNA-seq information investigation connected the receptor ACE2 look reveals the imaginable hazard of antithetic quality organs susceptible to 2019-nCoV infection. Front Med.14, 185–192 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi, F., Qian, S., Zhang, S. & Zhang, Z. Single compartment RNA sequencing of 13 quality tissues place compartment types and receptors of quality coronaviruses. Biochem. Biophys. Res. Co. 526, 135–140 (2020).

    Article  CAS  Google Scholar 

  • Lukassen, S. et al. SARS‐CoV‐2 receptor ACE2 and TMPRSS2 are chiefly expressed successful bronchial transient secretory cells. EMBO J. 39, e105114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, N. et al. SARS-CoV-2 corruption of the oral cavity and saliva. Nat. Med. 27, 892–903 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng, B. et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 603, 706–714 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fullard, J. F. et al. Single-nucleus transcriptome investigation of quality encephalon immune effect successful patients with terrible COVID-19. Genome Med. 13, 118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rendeiro, A. F. et al. The spatial scenery of lung pathology during COVID-19 progression. Nature 593, 564–569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pujadas, E. et al. Molecular profiling of COVID-19 autopsies uncovers caller illness mechanisms. Am. J. Pathol. 191, 2064–2071 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Ziegler, C. G. K. et al. Impaired section intrinsic immunity to SARS-CoV-2 corruption successful terrible COVID-19. Cell 184, 4713–4733 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, X. et al. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell 184, 1895–1913 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardes, J. P. et al. Longitudinal multi-omics analyses place responses of megakaryocytes, erythroid cells, and plasmablasts arsenic hallmarks of terrible COVID-19. Immunity 53, 1296–1314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer, D. S. et al. Single-cell RNA sequencing reveals ex vivo signatures of SARS-CoV-2-reactive T cells done ‘reverse phenotyping’. Nat. Commun. 12, 4515 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trump, S. et al. Hypertension delays viral clearance and exacerbates airway hyperinflammation successful patients with COVID-19. Nat. Biotechnol. 39, 705–716 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Scheid, J. F. et al. B compartment genomics down cross-neutralization of SARS-CoV-2 variants and SARS-CoV. Cell 184, 3205–3221 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilk, A. J. et al. A single-cell atlas of the peripheral immune effect successful patients with terrible COVID-19. Nat. Med. 26, 1070–1076 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson, E. et al. Single-cell multi-omics investigation of the immune effect successful COVID-19. Nat. Med. 27, 904–916 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arunachalam, P. S. et al. Systems vaccinology of the BNT162b2 mRNA vaccine successful humans. Nature 596, 410–416 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Read Entire Article