Ballering, A. V., van Zon, S. K. R., Hartman, T. C. O. & Rosmalen, J. G. M. Persistence of somatic symptoms aft COVID-19 successful the Netherlands: an observational cohort study. Lancet 400, 452–461 (2022).
Bull-Otterson, L. Post–COVID conditions among big COVID-19 survivors aged 18–64 and ≥65 years — United States, March 2020–November 2021. MMWR Morb. Mortal. Wkly Rep. 71, 713 (2022).
Ceban, F. et al. Fatigue and cognitive impairment successful post-COVID-19 syndrome: a systematic reappraisal and meta-analysis. Brain Behav. Immun. 101, 93–135 (2022).
Al-Aly, Z., Bowe, B. & Xie, Y. Long COVID aft breakthrough SARS-CoV-2 infection. Nat. Med. https://doi.org/10.1038/s41591-022-01840-0 (2022).
Ayoubkhani, D. et al. Risk of Long Covid successful radical infected with SARS-CoV-2 aft 2 doses of a COVID-19 vaccine: community-based, matched cohort study. Preprint astatine medRxiv https://doi.org/10.1101/2022.02.23.22271388 (2022).
FAIR Health. Patients Diagnosed with Post-COVID Conditions: An Analysis of Private Healthcare Claims Using the Official ICD-10 Diagnostic Code (FAIR Health, 2022).
Davis, H. E. et al. Characterizing agelong COVID successful an planetary cohort: 7 months of symptoms and their impact. eClinicalMedicine 38, 101019 (2021).
Xie, Y., Xu, E., Bowe, B. & Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 28, 583–590 (2022).
Xie, Y. & Al-Aly, Z. Risks and burdens of incidental diabetes successful agelong COVID: a cohort study. Lancet Diabetes Endocrinol. 10, 311–321 (2022).
Mancini, D. M. et al. Use of cardiopulmonary accent investigating for patients with unexplained dyspnea post–coronavirus disease. JACC Heart Fail. 9, 927–937 (2021).
Kedor, C. et al. A prospective observational survey of post-COVID-19 chronic fatigue syndrome pursuing the archetypal pandemic question successful Germany and biomarkers associated with grounds severity. Nat. Commun. 13, 5104 (2022).
Larsen, N. W. et al. Characterization of autonomic grounds load successful agelong COVID: a planetary survey of 2314 adults. Front. Neurol. 13, 1012668 (2022).
Demko, Z. O. et al. Post-acute sequelae of SARS-CoV-2 (PASC) interaction prime of beingness astatine 6, 12 and 18 months post-infection. Preprint astatine medRxiv https://doi.org/10.1101/2022.08.08.22278543 (2022).
Cairns, R. & Hotopf, M. A systematic reappraisal describing the prognosis of chronic fatigue syndrome. Occup. Med. Oxf. Engl. 55, 20–31 (2005).
Bach, K. Is ‘long Covid’ worsening the labour shortage? Brookings https://www.brookings.edu/research/is-long-covid-worsening-the-labor-shortage/ (2022).
Swank, Z. et al. Persistent circulating terrible acute respiratory syndrome coronavirus 2 spike is associated with post-acute coronavirus illness 2019 sequelae. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciac722 (2022).
Proal, A. D. & VanElzakker, M. B. Long COVID oregon post-acute sequelae of COVID-19 (PASC): an overview of biologic factors that whitethorn lend to persistent symptoms. Front. Microbiol. 12, 698169 (2021).
Klein, J. et al. Distinguishing features of Long COVID identified done immune profiling. Preprint astatine medRxiv https://doi.org/10.1101/2022.08.09.22278592 (2022).
Glynne, P., Tahmasebi, N., Gant, V. & Gupta, R. Long COVID pursuing mild SARS-CoV-2 infection: diagnostic T compartment alterations and effect to antihistamines. J. Investig. Med. 70, 61–67 (2022).
Phetsouphanh, C. et al. Immunological dysfunction persists for 8 months pursuing archetypal mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 23, 210–216 (2022).
Zubchenko, S., Kril, I., Nadizhko, O., Matsyura, O. & Chopyak, V. Herpesvirus infections and post-COVID-19 manifestations: a aviator observational study. Rheumatol. Int. https://doi.org/10.1007/s00296-022-05146-9 (2022).
Peluso, M. J. et al. Evidence of caller Epstein-Barr microorganism reactivation successful individuals experiencing Long COVID. Preprint astatine medRxiv https://doi.org/10.1101/2022.06.21.22276660 (2022).
Yeoh, Y. K. et al. Gut microbiota creation reflects illness severity and dysfunctional immune responses successful patients with COVID-19. Gut 70, 698–706 (2021).
Liu, Q. et al. Gut microbiota dynamics successful a prospective cohort of patients with post-acute COVID-19 syndrome. Gut 71, 544–552 (2022).
Mendes de Almeida, V. Gut microbiota from patients with mild COVID-19 origin alterations successful mice that lucifer post-COVID syndrome. Res. Sq. https://doi.org/10.21203/rs.3.rs-1756189/v1 (2022).
Wallukat, G. et al. Functional autoantibodies against G-protein coupled receptors successful patients with persistent long-COVID-19 symptoms. J. Transl Autoimmun. 4, 100100 (2021).
Su, Y. et al. Multiple aboriginal factors expect post-acute COVID-19 sequelae. Cell 185, 881–895.e20 (2022).
Arthur, J. M. et al. Development of ACE2 autoantibodies aft SARS-CoV-2 infection. PLoS ONE 16, e0257016 (2021).
Haffke, M. et al. Endothelial dysfunction and altered endothelial biomarkers successful patients with post-COVID-19 syndrome and chronic fatigue syndrome (ME/CFS). J. Transl Med. 20, 138 (2022).
Charfeddine, S. Long COVID 19 syndrome: is it related to microcirculation and endothelial dysfunction? Insights from TUN-EndCOV study. Front. Cardiovasc. Med. https://doi.org/10.3389/fcvm.2021.745758 (2021).
Pretorius, E. et al. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology successful individuals with Long COVID/post-acute sequelae of COVID-19 (PASC). Cardiovasc. Diabetol. 21, 148 (2022).
Spudich, S. & Nath, A. Nervous strategy consequences of COVID-19. Science 375, 267–269 (2022).
Renz-Polster, H., Tremblay, M.-E., Bienzle, D. & Fischer, J. E. The pathobiology of myalgic encephalomyelitis/chronic fatigue syndrome: the lawsuit for neuroglial failure. Front. Cell. Neurosci. 16, 888232 (2022).
Merzon, E. et al. Clinical and socio-demographic variables associated with the diagnosis of agelong COVID syndrome successful youth: a population-based study. Int. J. Environ. Res. Public Health 19, 5993 (2022).
CDC. Long COVID - household pulse survey - COVID-19. CDC https://www.cdc.gov/nchs/covid19/pulse/long-covid.htm (2022).
Williamson, A. E., Tydeman, F., Miners, A., Pyper, K. & Martineau, A. R. Short-term and semipermanent impacts of COVID-19 connected economical vulnerability: a population-based longitudinal survey (COVIDENCE UK). BMJ Open 12, e065083 (2022).
Ziauddeen, N. et al. Characteristics and interaction of Long Covid: findings from an online survey. PLoS ONE 17, e0264331 (2022).
Choutka, J., Jansari, V., Hornig, M. & Iwasaki, A. Unexplained post-acute corruption syndromes. Nat. Med. 28, 911–923 (2022).
Komaroff, A. L. & Lipkin, W. I. Insights from myalgic encephalomyelitis/chronic fatigue syndrome whitethorn assistance unravel the pathogenesis of postacute COVID-19 syndrome. Trends Mol. Med. 27, 895–906 (2021).
Schultheiß, C. et al. From online information postulation to recognition of illness mechanisms: the IL-1ß, IL-6 and TNF-α cytokine triad is associated with post-acute sequelae of COVID-19 successful a integer probe cohort. SSRN https://doi.org/10.2139/ssrn.3963839 (2021).
Peluso, M. J. et al. Markers of immune activation and inflammation successful individuals with postacute sequelae of terrible acute respiratory syndrome coronavirus 2 infection. J. Infect. Dis. 224, 1839–1848 (2021).
Fernández-Castañeda, A. et al. Mild respiratory SARS-CoV-2 corruption tin origin multi-lineage cellular dysregulation and myelin nonaccomplishment successful the brain. Preprint astatine bioRxiv https://doi.org/10.1101/2022.01.07.475453 (2022).
Hornig, M. et al. Distinct plasma immune signatures successful ME/CFS are contiguous aboriginal successful the people of illness. Sci. Adv. 1, e1400121 (2015).
Wang, E. Y. et al. Diverse functional autoantibodies successful patients with COVID-19. Nature 595, 283–288 (2021).
Shikova, E. et al. Cytomegalovirus, Epstein-Barr virus, and quality herpesvirus-6 infections successful patients with myalgic еncephalomyelitis/chronic fatigue syndrome. J. Med. Virol. 92, 3682–3688 (2020).
Schreiner, P. et al. Human herpesvirus-6 reactivation, mitochondrial fragmentation, and the coordination of antiviral and metabolic phenotypes successful myalgic encephalomyelitis/chronic fatigue syndrome. Immunohorizons 4, 201–215 (2020).
García-Abellán, J. et al. Antibody effect to SARS-CoV-2 is associated with semipermanent objective result successful patients with COVID-19: a longitudinal study. J. Clin. Immunol. 41, 1490–1501 (2021).
Augustin, M. et al. Post-COVID syndrome successful non-hospitalised patients with COVID-19: a longitudinal prospective cohort study. Lancet Reg. Health Eur. 6, 100122 (2021).
Talla, A. et al. Longitudinal immune dynamics of mild COVID-19 specify signatures of betterment and persistence. Preprint astatine bioRxiv https://doi.org/10.1101/2021.05.26.442666 (2021).
Peluso, M. J. et al. Long-term SARS-CoV-2-specific immune and inflammatory responses successful individuals recovering from COVID-19 with and without post-acute symptoms. Cell Rep. 36, 109518 (2021).
Hu, F. et al. A compromised circumstantial humoral immune effect against the SARS-CoV-2 receptor-binding domain is related to viral persistence and periodic shedding successful the gastrointestinal tract. Cell. Mol. Immunol. 17, 1119–1125 (2020).
Korte, W. et al. SARS-CoV-2 IgG and IgA antibody effect is sex dependent; and IgG antibodies rapidly diminution aboriginal on. J. Infect. 82, e11–e14 (2021).
Jo, W. et al. A two-phase, azygous cohort survey of COVID-19 antibody sera-surveillance. Ann. Epidemiol. Public Health 4, 1055 (2021).
Nomura, Y. et al. Attenuation of antibody titers from 3 to 6 months aft the 2nd dose of the BNT162b2 vaccine depends connected sex, with property and smoking hazard factors for little antibody titers astatine 6 months. Vaccines 9, 1500 (2021).
Tejerina, F. et al. Post-COVID-19 syndrome. SARS-CoV-2 RNA detection successful plasma, stool, and urine successful patients with persistent symptoms aft COVID-19. BMC Infect. Dis. 22, 211 (2022).
Goh, D. et al. Persistence of residual SARS-CoV-2 viral antigen and RNA successful tissues of patients with agelong COVID-19. Preprint astatine https://www.researchsquare.com/article/rs-1379777/v1 (2022).
Ceulemans, L. J. et al. Persistence of SARS-CoV-2 RNA successful lung insubstantial aft mild COVID-19. Lancet Respir. Med. 9, e78–e79 (2021).
Gaebler, C. et al. Evolution of antibody immunity to SARS-CoV-2. Nature 591, 639–644 (2021).
Menuchin-Lasowski, Y. et al. SARS-CoV-2 infects and replicates successful photoreceptor and retinal ganglion cells of quality retinal organoids. Stem Cell Rep 17, 789–803 (2022).
Cheung, C. C. L. et al. Residual SARS-CoV-2 viral antigens detected successful GI and hepatic tissues from 5 recovered patients with COVID-19. Gut 71, 226–229 (2022).
Natarajan, A. et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med 3, 371–387.e9 (2022).
Katsoularis, I. et al. Risks of heavy vein thrombosis, pulmonary embolism, and bleeding aft covid-19: nationwide self-controlled cases bid and matched cohort study. BMJ 377, e069590 (2022).
Pretorius, E. et al. Persistent clotting macromolecule pathology successful Long COVID/post-acute sequelae of COVID-19 (PASC) is accompanied by accrued levels of antiplasmin. Cardiovasc. Diabetol. 20, 172 (2021).
Kubánková, M. et al. Physical phenotype of humor cells is altered successful COVID-19. Biophys. J. 120, 2838–2847 (2021).
Osiaevi, I. et al. Persistent capillary rarefication successful agelong COVID syndrome. Angiogenesis https://doi.org/10.1007/s10456-022-09850-9 (2022).
Patel, M. A. et al. Elevated vascular translation humor biomarkers successful long-COVID bespeak angiogenesis arsenic a cardinal pathophysiological mechanism. Mol. Med. 28, 122 (2022).
Puntmann, V. O. et al. Outcomes of cardiovascular magnetic resonance imaging successful patients precocious recovered from coronavirus illness 2019 (COVID-19). JAMA Cardiol 5, 1265–1273 (2020).
Roca-Fernández, A. et al. Cardiac impairment successful Long Covid 1-year post-SARS-CoV-2 infection. Eur. Heart J. 43, ehac544.219 (2022).
Dennis, A. et al. Multiorgan impairment successful low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study. BMJ Open 11, e048391 (2021).
Dennis, A. et al. Multi-organ impairment and Long COVID: a 1-year prospective, longitudinal cohort study. Preprint astatine medRxiv https://doi.org/10.1101/2022.03.18.22272607 (2022).
Bowe, B., Xie, Y., Xu, E. & Al-Aly, Z. Kidney outcomes successful Long COVID. J. Am. Soc. Nephrol. 32, 2851–2862 (2021).
Almufarrij, I. & Munro, K. J. One twelvemonth on: an updated systematic reappraisal of SARS-CoV-2, COVID-19 and audio-vestibular symptoms. Int. J. Audiol. 60, 935–945 (2021).
Holdsworth, D. A. et al. Comprehensive objective appraisal identifies circumstantial neurocognitive deficits successful working-age patients with long-COVID. PLoS ONE 17, e0267392 (2022).
Cysique, L. A. et al. Post-acute COVID-19 cognitive impairment and diminution uniquely subordinate with kynurenine pathway activation: a longitudinal observational study. Preprint astatine medRxiv https://doi.org/10.1101/2022.06.07.22276020 (2022).
Crivelli, L. et al. Changes successful cognitive functioning aft COVID-19: a systematic reappraisal and meta-analysis. Alzheimers Dement. 18, 1047–1066 (2022).
Woo, M. S. et al. Frequent neurocognitive deficits aft betterment from mild COVID-19. Brain Commun. 2, fcaa205 (2020).
Taquet, M. et al. Neurological and psychiatric hazard trajectories aft SARS-CoV-2 infection: an investigation of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry 9, 815–827 (2022).
Reiken, S. et al. Alzheimer’s-like signaling successful brains of COVID-19 patients. Alzheimers Dement. 18, 955–965 (2022).
Charnley, M. et al. Neurotoxic amyloidogenic peptides successful the proteome of SARS-COV2: imaginable implications for neurological symptoms successful COVID-19. Nat. Commun. 13, 3387 (2022).
Visser, D. et al. Long COVID is associated with extended in-vivo neuroinflammation connected [18F]DPA-714 PET. Preprint astatine medRxiv https://doi.org/10.1101/2022.06.02.22275916 (2022).
Guedj, E. et al. 18F-FDG encephalon PET hypometabolism successful patients with agelong COVID. Eur. J. Nucl. Med. Mol. Imaging 48, 2823–2833 (2021).
Hugon, J. et al. Cognitive diminution and brainstem hypometabolism successful agelong COVID: a lawsuit series. Brain Behav. 12, e2513 (2022).
Apple, A. C. et al. Risk factors and abnormal cerebrospinal fluid subordinate with cognitive symptoms aft mild COVID-19. Ann. Clin. Transl Neurol. 9, 221–226 (2022).
Douaud, G. et al. SARS-CoV-2 is associated with changes successful encephalon operation successful UK Biobank. Nature 604, 697–707 (2022).
Peluso, M. J. et al. SARS-CoV-2 and mitochondrial proteins successful neural-derived exosomes of COVID-19. Ann. Neurol. 91, 772–781 (2022).
Villaume, W. A. Marginal BH4 deficiencies, iNOS, and self-perpetuating oxidative accent successful post-acute sequelae of Covid-19. Med. Hypotheses 163, 110842 (2022).
Bitirgen, G. et al. Corneal confocal microscopy identifies corneal nervus fibre nonaccomplishment and accrued dendritic cells successful patients with agelong COVID. Br. J. Ophthalmol. https://doi.org/10.1136/bjophthalmol-2021-319450 (2021).
Barros, A. et al. Small fibre neuropathy successful the cornea of Covid-19 patients associated with the procreation of ocular aboveground disease. Ocul. Surf. 23, 40–48 (2022).
Bitirgen, G. et al. Abnormal quantitative pupillary airy responses pursuing COVID-19. Int. Ophthalmol. https://doi.org/10.1007/s10792-022-02275-9 (2022).
Mardin, C. Y. et al. Possible interaction of functional progressive GPCR-autoantibodies connected retinal microcirculation successful long-COVID. Invest. Ophthalmol. Vis. Sci. 63, 3315–F0124 (2022).
Zhang, B.-Z. et al. SARS-CoV-2 infects quality neural progenitor cells and encephalon organoids. Cell Res. 30, 928–931 (2020).
Sen, S. et al. Retinal manifestations successful patients with SARS-CoV-2 corruption and pathogenetic implications: a systematic review. Int. Ophthalmol. 42, 323–336 (2022).
Frere, J. J. et al. SARS-CoV-2 corruption successful hamsters and humans results successful lasting and unsocial systemic perturbations station recovery. Sci. Transl Med. 14, eabq3059 (2022).
Rutkai, I. et al. Neuropathology and microorganism successful encephalon of SARS-CoV-2 infected non-human primates. Nat. Commun. 13, 1745 (2022).
Committee connected the Diagnostic Criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, Board connected the Health of Select Populations, & Institute of Medicine. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness (National Academies Press, 2015).
Bateman, L. et al. Myalgic encephalomyelitis/chronic fatigue syndrome: essentials of diagnosis and management. Mayo Clin. Proc. 96, 2861–2878 (2021).
The ME Association. Index of ME/CFS published probe - Nov 2022. 224 Index of ME/CFS Published Research. The ME Association https://meassociation.org.uk/ (2022).
Seltzer, J. & Thomas, J. ME Research Summary 2019 (The ME Association, 2019).
Wong, T. L. & Weitzer, D. J. Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)-a systemic reappraisal and examination of objective presumption and symptomatology. Med. (Kaunas.) 57, 418 (2021).
Twomey, R. et al. Chronic fatigue and postexertional malaise successful radical surviving with Long COVID: an observational study. Phys. Ther. 102, pzac005 (2022).
Vernon, S. D. et al. Orthostatic situation causes distinctive symptomatic, hemodynamic and cognitive responses successful Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome. Front. Med. 9, 917019 (2022).
Lam, M. H.-B. et al. Mental morbidities and chronic fatigue successful terrible acute respiratory syndrome survivors: semipermanent follow-up. Arch. Intern. Med. 169, 2142–2147 (2009).
Keller, B. A., Pryor, J. L. & Giloteaux, L. Inability of myalgic encephalomyelitis/chronic fatigue syndrome patients to reproduce VO2peak indicates functional impairment. J. Transl Med. 12, 104 (2014).
Saha, A. K. et al. Erythrocyte deformability arsenic a imaginable biomarker for chronic fatigue syndrome. Blood 132, 4874 (2018).
Díaz-Resendiz, K. J. G. et al. Loss of mitochondrial membrane imaginable (ΔΨm) successful leucocytes arsenic post-COVID-19 sequelae. J. Leukoc. Biol. 112, 23–29 (2022).
Pozzi, A. COVID-19 and mitochondrial non-coding RNAs: caller insights from published data. Front. Physiol. 12, 805005 (2022).
Guntur, V. P. et al. Signatures of mitochondrial dysfunction and impaired fatty acerb metabolism successful plasma of patients with post-acute sequelae of COVID-19 (PASC). Metabolites 12, 1026 (2022).
Paul, B. D., Lemle, M. D., Komaroff, A. L. & Snyder, S. H. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc. Natl Acad. Sci. USA 118, e2024358118 (2021).
Wright, J., Astill, S. L. & Sivan, M. The narration betwixt carnal enactment and Long COVID: a cross-sectional study. Int. J. Environ. Res. Public Health 19, 5093 (2022).
Heerdt, P. M., Shelley, B. & Singh, I. Impaired systemic oxygen extraction agelong aft mild COVID-19: imaginable perioperative implications. Br. J. Anaesth. 128, e246–e249 (2022).
Novak, P. et al. Multisystem engagement successful post-acute sequelae of coronavirus illness 19. Ann. Neurol. 91, 367–379 (2022).
Holmes, E. et al. Incomplete systemic betterment and metabolic phenoreversion successful post-acute-phase nonhospitalized COVID-19 patients: implications for appraisal of post-acute COVID-19 syndrome. J. Proteome Res. 20, 3315–3329 (2021).
van Campen, C. L. M. C. & Visser, F. C. Orthostatic intolerance successful long-haul COVID aft SARS-CoV-2: a case-control examination with post-EBV and insidious-onset myalgic encephalomyelitis/chronic fatigue syndrome patients. Healthcare 10, 2058 (2022).
van Campen, C. L. M. C. & Visser, F. C. Long-Haul COVID patients: prevalence of POTS are reduced but cerebral humor travel abnormalities stay abnormal with longer illness duration. Healthcare 10, 2105 (2022).
Nunes, J. M., Kruger, A., Proal, A., Kell, D. B. & Pretorius, E. The occurrence of hyperactivated platelets and fibrinaloid microclots successful myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Pharmaceuticals 15, 931 (2022).
Hoad, A., Spickett, G., Elliott, J. & Newton, J. Postural orthostatic tachycardia syndrome is an under-recognized information successful chronic fatigue syndrome. QJM 101, 961–965 (2008).
Shaw, B. H. et al. The look of postural tachycardia syndrome – insights from a ample cross‐sectional online community‐based survey. J. Intern. Med. 286, 438–448 (2019).
Raj, S. R. et al. Postural orthostatic tachycardia syndrome (POTS): priorities for POTS attraction and probe from a 2019 National Institutes of Health adept statement gathering - portion 2. Auton. Neurosci. Basic. Clin. 235, 102836 (2021).
Oaklander, A. L. et al. Peripheral neuropathy evaluations of patients with prolonged Long COVID. Neurol. Neuroimmunol. Neuroinflamm. 9, e1146 (2022).
Larsen, N. W. et al. Characterization of autonomic grounds load successful agelong COVID: a planetary survey of 2,314 adults. Front. Neurol. 13, 1012668 (2022).
Weinstock, L. B. et al. Mast compartment activation symptoms are prevalent successful Long-COVID. Int. J. Infect. Dis. 112, 217–226 (2021).
Boneva, R. S. et al. Endometriosis arsenic a comorbid information successful chronic fatigue syndrome (CFS): secondary investigation of information from a CFS case-control study. Front. Pediatr. 7, 195 (2019).
Bragée, B. et al. Signs of intracranial hypertension, hypermobility, and craniocervical obstructions successful patients with myalgic encephalomyelitis/chronic fatigue syndrome. Front. Neurol. 11, (2020).
Medina-Perucha, L. et al. Self-reported menstrual alterations during the COVID-19 syndemic successful Spain: a cross-sectional study. Int. J. Womens Health 14, 529–544 (2022).
Ding, T. et al. Analysis of ovarian wounded associated with COVID-19 illness successful reproductive-aged women successful Wuhan, China: an observational study. Front. Med. 8, 635255 (2021).
Sharp, G. C. et al. The COVID-19 pandemic and the menstrual cycle: probe gaps and opportunities. Int. J. Epidemiol. https://doi.org/10.1093/ije/dyab239 (2021).
Khan, S. M. et al. SARS-CoV-2 corruption and consequent changes successful the menstrual rhythm among participants successful the Arizona CoVHORT study. Am. J. Obstet. Gynecol. 226, 270–273 (2022).
Harlow, B. L., Signorello, L. B., Hall, J. E., Dailey, C. & Komaroff, A. L. Reproductive correlates of chronic fatigue syndrome. Am. J. Med. 105, 94S–99S (1998).
Thomas, N., Gurvich, C., Huang, K., Gooley, P. R. & Armstrong, C. W. The underlying enactment differences successful neuroendocrine adaptations applicable to myalgic encephalomyelitis chronic fatigue syndrome. Front. Neuroendocrinol. 66, 100995 (2022).
Boneva, R. S., Lin, J.-M. S. & Unger, E. R. Early menopause and different gynecologic hazard indicators for chronic fatigue syndrome successful women. Menopause 22, 826–834 (2015).
Kresch, E. et al. COVID-19 endothelial dysfunction tin origin erectile dysfunction: histopathological, immunohistochemical, and ultrastructural survey of the quality penis. World J. Mens Health 39, 466–469 (2021).
Maleki, B. H. & Tartibian, B. COVID-19 and antheral reproductive function: a prospective, longitudinal cohort study. Reproduction 161, 319–331 (2021).
Yu, J. Z. et al. Lung perfusion disturbances successful nonhospitalized post-COVID with dyspnea — a magnetic resonance imaging feasibility study. J. Intern. Med. 292, 941–956 (2022).
Cho, J. L. et al. Quantitative thorax CT appraisal of tiny airways illness successful post-acute SARS-CoV-2 infection. Radiology 304, 185–192 (2022).
Vijayakumar, B. et al. Immuno-proteomic profiling reveals aberrant immune compartment regularisation successful the airways of individuals with ongoing post-COVID-19 respiratory disease. Immunity 55, 542–556.e5 (2022).
Littlefield, K. M. et al. SARS-CoV-2-specific T cells subordinate with inflammation and reduced lung relation successful pulmonary post-acute sequalae of SARS-CoV-2. PLOS Pathog. 18, e1010359 (2022).
Meringer, H. & Mehandru, S. Gastrointestinal post-acute COVID-19 syndrome. Nat. Rev. Gastroenterol. Hepatol. 19, 345–346 (2022).
König, R. S. et al. The gut microbiome successful myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS). Front. Immunol. 12, 628741 (2022).
Zuo, T. et al. Depicting SARS-CoV-2 faecal viral enactment successful relation with gut microbiota creation successful patients with COVID-19. Gut 70, 276–284 (2021).
Zollner, A. et al. Postacute COVID-19 is characterized by gut viral antigen persistence successful inflammatory bowel diseases. Gastroenterology 163, 495–506.e8 (2022).
Giron, L. B. et al. Markers of fungal translocation are elevated during post-acute sequelae of SARS-CoV-2 and induce NF-κB signaling. JCI Insight https://doi.org/10.1172/jci.insight.160989 (2022).
Jason, L. A. et al. COVID-19 symptoms implicit time: comparing long-haulers to ME/CFS. Fatigue Biomed. Health Behav. 9, 59–68 (2021).
Tran, V.-T., Porcher, R., Pane, I. & Ravaud, P. Course of station COVID-19 illness symptoms implicit clip successful the ComPaRe agelong COVID prospective e-cohort. Nat. Commun. 13, 1812 (2022).
Walker, A., Kelly, C., Pottinger, G. & Hopkins, C. Parosmia — a communal effect of covid-19. BMJ 377, e069860 (2022).
Jamal, S. M. et al. Prospective valuation of autonomic dysfunction successful post-acute sequela of COVID-19. J. Am. Coll. Cardiol. 79, 2325–2330 (2022).
Stavileci, B., Özdemir, E., Özdemir, B., Ereren, E. & Cengiz, M. De-novo improvement of fragmented QRS during a six-month follow-up play successful patients with COVID-19 illness and its cardiac effects. J. Electrocardiol. 72, 44–48 (2022).
Grist, J. T. et al. Lung abnormalities depicted with hyperpolarized 129Xe MRI successful patients with agelong COVID. Radiology 305, 709–717 (2022).
US ME/CFS Clinician Coalition. Testing Recommendations for Suspected ME/CFS (US ME/CFS Clinician Coalition, 2021).
Galán, M. et al. Persistent overactive cytotoxic immune effect successful a Spanish cohort of individuals with long-COVID: recognition of diagnostic biomarkers. Front. Immunol. 13, 848886 (2022).
Grandjean, D. et al. Screening for SARS-CoV-2 persistence successful Long COVID patients utilizing sniffer dogs and scents from axillary sweats samples. Clin. Trials 12, 2 (2022).
Pifarré, F. et al. The usage of oxygen arsenic a imaginable screening biomarker for the diagnosis of chronic fatigue. Apunt. Sports Med 57, 100379 (2022).
Jason, L. A., Kalns, J., Richarte, A., Katz, B. Z. & Torres, C. Saliva fatigue biomarker scale arsenic a marker for terrible myalgic encephalomyelitis/chronic fatigue syndrome successful a assemblage based sample. Fatigue Biomed. Health Behav. 9, 189–195 (2021).
Esfandyarpour, R., Kashi, A., Nemat-Gorgani, M., Wilhelmy, J. & Davis, R. W. A nanoelectronics-blood-based diagnostic biomarker for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Proc. Natl Acad. Sci. USA 116, 10250–10257 (2019).
Nkiliza, A. et al. Sex-specific plasma lipid profiles of ME/CFS patients and their relation with pain, fatigue, and cognitive symptoms. J. Transl Med. 19, 370 (2021).
Bolton, M. J., Chapman, B. P. & Van Marwijk, H. Low-dose naltrexone arsenic a attraction for chronic fatigue syndrome. BMJ Case Rep. 13, e232502 (2020).
Pitt, B., Tate, A. M., Gluck, D., Rosenson, R. S. & Goonewardena, S. N. Repurposing low-dose naltrexone (LDN) for the prevention and attraction of immunothrombosis successful COVID-19. Eur. Heart J. Cardiovasc. Pharmacother. https://doi.org/10.1093/ehjcvp/pvac014 (2022).
Alper, K. Case report: famotidine for neuropsychiatric symptoms successful COVID-19. Front. Med. 7, 614393 (2020).
Hohberger, B. et al. Case report: neutralization of autoantibodies targeting G-protein-coupled receptors improves capillary impairment and fatigue symptoms aft COVID-19 infection. Front. Med. 8, 754667 (2021).
Wang, C. et al. Long COVID: the quality of thrombotic sequelae determines the necessity of aboriginal anticoagulation. Front. Cell. Infect. Microbiol. 12, 861703 (2022).
The ME Association. A caller attraction for Long Covid? The ME Association https://meassociation.org.uk/2021/10/a-new-treatment-for-long-covid/ (2021).
Tölle, M. et al. Myalgic encephalomyelitis/chronic fatigue syndrome: efficacy of repetition immunoadsorption. J. Clin. Med. 9, E2443 (2020).
Wood, E., Hall, K. H. & Tate, W. Role of mitochondria, oxidative accent and the effect to antioxidants successful myalgic encephalomyelitis/chronic fatigue syndrome: a imaginable attack to SARS-CoV-2 ‘long-haulers’? Chronic Dis. Transl Med. 7, 14–26 (2020).
NICE. Myalgic encephalomyelitis (or encephalopathy)/chronic fatigue syndrome: diagnosis and management. NICE https://www.nice.org.uk/guidance/NG206 (2021).
World Health Organization. Support for Rehabilitation Self-Management After COVID-19 Related Illness (WHO, 2021).
CDC. Treatment of ME/CFS | Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). CDC https://www.cdc.gov/me-cfs/treatment/index.html (2021).
Long COVID Physio. Exercise. Long COVID Physio https://longcovid.physio/exercise (2022).
Geng, L. N., Bonilla, H. F., Shafer, R. W., Miglis, M. G. & Yang, P. C. Case study of breakthrough agelong COVID and the usage of nirmatrelvir-ritonavir. Preprint astatine https://www.researchsquare.com/article/rs-1443341/v1 (2022).
Xie, Y., Choi, T. & Al-Aly, Z. Nirmatrelvir and the hazard of post-acute sequelae of COVID-19. Preprint astatine medRxiv https://doi.org/10.1101/2022.11.03.22281783 (2022).
Charfeddine, S. et al. Sulodexide successful the attraction of patients with agelong COVID 19 symptoms and endothelial dysfunction: the results of TUN-EndCOV study. Arch. Cardiovasc. Dis. Suppl. 14, 127 (2022).
Thomas, R. et al. A randomised, double-blind, placebo-controlled proceedings evaluating concentrated phytochemical-rich nutritional capsule successful summation to a probiotic capsule connected objective outcomes among individuals with COVID-19 — the UK Phyto-V study. COVID 2, 433–449 (2022).
Zhang, L. et al. Gut microbiota-derived synbiotic look (SIM01) arsenic a caller adjuvant therapy for COVID-19: an open-label aviator study. J. Gastroenterol. Hepatol. 37, 823–831 (2022).
Liu, L. D. & Duricka, D. L. Stellate ganglion artifact reduces symptoms of Long COVID: a lawsuit series. J. Neuroimmunol. 362, 577784 (2022).
Belcaro, G. et al. Preventive effects of Pycnogenol® connected cardiovascular hazard factors (including endothelial function) and microcirculation successful subjects recovering from coronavirus illness 2019 (COVID-19). Minerva Med. 113, 300–308 (2022).
Crooks, V., Waller, S., Smith, T. & Hahn, T. J. The usage of the Karnofsky Performance Scale successful determining outcomes and hazard successful geriatric outpatients. J. Gerontol. 46, M139–M144 (1991).
Ledford, H. Long-COVID treatments: wherefore the satellite is inactive waiting. Nature 608, 258–260 (2022).
Toogood, P. L., Clauw, D. J., Phadke, S. & Hoffman, D. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): wherever volition the drugs travel from? Pharmacol. Res. 165, 105465 (2021).
US ME/CFS Clinician Coalition. ME/CFS Treatment Recommendations (US ME/CFS Clinician Coalition, 2021).
Taquet, M., Dercon, Q. & Harrison, P. J. Six-month sequelae of post-vaccination SARS-CoV-2 infection: a retrospective cohort survey of 10,024 breakthrough infections. Brain Behav. Immun. 103, 154–162 (2022).
Office for National Statistics. Self-reported agelong COVID aft corruption with the Omicron variant successful the UK: 6 May 2022. Office for National Statistics https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/selfreportedlongcovidafterinfectionwiththeomicronvariant/6may2022 (2022).
Tsuchida, T. et al. Relationship betwixt changes successful symptoms and antibody titers aft a azygous vaccination successful patients with Long COVID. J. Med. Virol. 94, 3416–3420 (2022).
VA COVID-19 Observational Research Collaboratory. Burden of PCR-confirmed SARS-CoV-2 reinfection successful the U.S. Veterans Administration, March 2020 – January 2022. Preprint astatine medRxiv https://doi.org/10.1101/2022.03.20.22272571 (2022).
Bowe, B., Xie, Y. & Al-Aly, Z. Acute and postacute sequelae associated with SARS-CoV-2 reinfection. Nat. Med. https://doi.org/10.1038/s41591-022-02051-3 (2022).
Blomberg, J., Gottfries, C.-G., Elfaitouri, A., Rizwan, M. & Rosén, A. Infection elicited autoimmunity and myalgic encephalomyelitis/chronic fatigue syndrome: an explanatory model. Front. Immunol. 9, 229 (2018).
Cauchemez, S. & Bosetti, P. A reconstruction of aboriginal cryptic COVID spread. Nature 600, 40–41 (2021).
CDC. Estimated COVID-19 burden. Centers for Disease Control and Prevention https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/burden.html (2020).
Kucirka, L. M., Lauer, S. A., Laeyendecker, O., Boon, D. & Lessler, J. Variation successful false-negative complaint of reverse transcriptase polymerase concatenation reaction–based SARS-CoV-2 tests by clip since exposure. Ann. Intern. Med. 173, 262–267 (2020).
Levine-Tiefenbrun, M. et al. SARS-CoV-2 RT-qPCR trial detection rates are associated with diligent age, sex, and clip since diagnosis. J. Mol. Diagn. 24, 112–119 (2022).
Jarvis, K. F. & Kelley, J. B. Temporal dynamics of viral load and mendacious antagonistic complaint power the levels of investigating indispensable to combat COVID-19 spread. Sci. Rep. 11, 9221 (2021).
Dattner, I. et al. The relation of children successful the dispersed of COVID-19: utilizing household information from Bnei Brak, Israel, to estimation the comparative susceptibility and infectivity of children. PLoS Comput. Biol. 17, e1008559 (2021).
Langeland, N. & Cox, R. J. Are debased SARS-CoV-2 viral loads successful infected children missed by RT-PCR testing? Lancet Reg. Health Eur. 5, 100138 (2021).
Van Elslande, J. et al. Longitudinal follow-up of IgG anti-nucleocapsid antibodies successful SARS-CoV-2 infected patients up to 8 months aft infection. J. Clin. Virol. 136, 104765 (2021).
Liu, W. et al. Predictors of nonseroconversion aft SARS-CoV-2 infection. Emerg. Infect. Dis. 27, 2454–2458 (2021).
Toh, Z. Q. et al. Comparison of seroconversion successful children and adults with mild COVID-19. JAMA Netw. Open 5, e221313 (2022).
Peterson, T. M., Peterson, T. W., Emerson, S., Meredyth, A. Evans, E. R. & Jason, L. A. Coverage of CFS wrong U.S. aesculapian schools. Univers. J. Public Health 1, 177–179 (2013).
Rowe, P. C. et al. Orthostatic intolerance and chronic fatigue syndrome associated with Ehlers-Danlos syndrome. J. Pediatr. 135, 494–499 (1999).
Nguyen, T. et al. Novel characterisation of mast compartment phenotypes from peripheral humor mononuclear cells successful chronic fatigue syndrome/myalgic encephalomyelitis patients. Asian Pac. J. Allergy Immunol. 35, 75–81 (2017).
Wagner, C., Isenmann, S., Ringendahl, H. & Haensch, C.-A. Anxiety successful patients with postural tachycardia syndrome (POTS). Fortschr. Neurol. Psychiatr. 80, 458–462 (2012).
Grayson, D. A., Mackinnon, A., Jorm, A. F., Creasey, H. & Broe, G. A. Item bias successful the halfway for epidemiologic studies slump scale: effects of carnal disorders and disablement successful an aged assemblage sample. J. Gerontol. Ser. B 55, P273–P282 (2000).
Twisk, F. N. M. & Maes, M. A reappraisal connected cognitive behavorial therapy (CBT) and graded workout therapy (GET) successful myalgic encephalomyelitis (ME) / chronic fatigue syndrome (CFS): CBT/GET is not lone ineffective and not evidence-based, but besides perchance harmful for galore patients with ME/CFS. Neuro Endocrinol. Lett. 30, 284–299 (2009).
Vink, M. & Vink-Niese, F. Is it utile to question the betterment behaviour of patients with ME/CFS oregon Long COVID? Healthcare 10, 392 (2022).
Dysautonomia International. What is dysautonomia? Dysautonomia International http://www.dysautonomiainternational.org/page.php?ID=34 (2022).
CDC. Epidemiology | Presentation and objective people | Healthcare providers | Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). CDC https://www.cdc.gov/me-cfs/healthcare-providers/presentation-clinical-course/epidemiology.html (2021).
Sørensen, A. I. V. et al. A nationwide questionnaire survey of post-acute symptoms and wellness problems aft SARS-CoV-2 corruption successful Denmark. Nat. Commun. 13, 4213 (2022).
Berg, S. K. et al. Long COVID symptoms successful SARS-CoV-2-positive children aged 0–14 years and matched controls successful Denmark (LongCOVIDKidsDK): a national, cross-sectional study. Lancet Child Adolesc. Health 6, 614–623 (2022).
Morrow, A. K. et al. Long-term COVID 19 sequelae successful adolescents: the overlap with orthostatic intolerance and ME/CFS. Curr. Pediatr. Rep. 10, 31–44 (2022).
Cooper, S. et al. Long COVID-19 liver manifestation successful children. J. Pediatr. Gastroenterol. Nutr. https://doi.org/10.1097/MPG.0000000000003521 (2022).
Kompaniyets, L. Post–COVID-19 symptoms and conditions among children and adolescents — United States, March 1, 2020–January 31, 2022. MMWR Morb. Mortal. Wkly Rep. 71, 993–999 (2022).
Edlow, A. G., Castro, V. M., Shook, L. L., Kaimal, A. J. & Perlis, R. H. Neurodevelopmental outcomes astatine 1 twelvemonth successful infants of mothers who tested affirmative for SARS-CoV-2 during pregnancy. JAMA Netw. Open 5, e2215787 (2022).
Morand, A. et al. Similar patterns of [18F]-FDG encephalon PET hypometabolism successful paediatric and big patients with agelong COVID: a paediatric lawsuit series. Eur. J. Nucl. Med. Mol. Imaging 49, 913–920 (2022).
Heiss, R. et al. Pulmonary dysfunction aft pediatric COVID-19. Radiology https://doi.org/10.1148/radiol.221250 (2022).