Simonetti, M., Cannas, D. M., Just-Baringo, X., Vitorica-Yrezabal, I. J. & Larrosa, I. Cyclometallated ruthenium catalyst enables late-stage directed arylation of pharmaceuticals. Nat. Chem. 10, 724–731 (2018).
Salazar, C. A. et al. Tailored quinones enactment high-turnover Pd catalysts for oxidative C-H arylation with O2. Science 370, 1454–1460 (2020).
DiRocco, D. A. et al. A multifunctional catalyst that stereoselectively assembles prodrugs. Science 356, 426–430 (2017).
Li, T. et al. Efficient, chemoenzymatic process for manufacture of the Boceprevir bicyclic [3.1.0]proline intermediate based connected amine oxidase-catalyzed desymmetrization. J. Am. Chem. Soc. 134, 6467–6472 (2012).
Nielsen, L. P., Stevenson, C. P., Blackmond, D. G. & Jacobsen, E. N. Mechanistic probe leads to a synthetic betterment successful the hydrolytic kinetic solution of terminal epoxides. J. Am. Chem. Soc. 126, 1360–1362 (2004).
van Dijk, L. et al. Mechanistic probe of Rh(I)-catalysed asymmetric Suzuki–Miyaura coupling with racemic allyl halides. Nat. Catal. 4, 284–292 (2021).
Camasso, N. M. & Sanford, M. S. Design, synthesis, and carbon-heteroatom coupling reactions of organometallic nickel(IV) complexes. Science 347, 1218–1220 (2015).
Milo, A., Neel, A. J., Toste, F. D. & Sigman, M. S. A data-intensive attack to mechanistic elucidation applied to chiral anion catalysis. Science 347, 737–743 (2015).
Butcher, T. W. et al. Desymmetrization of difluoromethylene groups by C-F enslaved activation. Nature 583, 548–553 (2020).
Cho, E. J. et al. The palladium-catalyzed trifluoromethylation of aryl chlorides. Science 328, 1679–1681 (2010).
Hutchinson, G., Alamillo-Ferrer, C. & Bures, J. Mechanistically guided plan of an businesslike and enantioselective aminocatalytic alpha-chlorination of aldehydes. J. Am. Chem. Soc. 143, 6805–6809 (2021).
Schreyer, L. et al. Confined acids catalyze asymmetric azygous aldolizations of acetaldehyde enolates. Science 362, 216–219 (2018).
Peters, B. K. et al. Scalable and harmless synthetic integrated electroreduction inspired by Li-ion artillery chemistry. Science 363, 838–845 (2019).
Michaelis, L. & Menten, M. L. Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333–369 (1913).
Blackmond, D. G. Reaction advancement kinetic analysis: a almighty methodology for mechanistic studies of analyzable catalytic reactions. Angew. Chem. Int. Ed. Engl. 44, 4302–4320 (2005).
Mathew, J. S. et al. Investigations of Pd-catalyzed ArX coupling reactions informed by absorption advancement kinetic analysis. J. Org. Chem. 71, 4711–4722 (2006).
Bures, J. A elemental graphical method to find the bid successful catalyst. Angew. Chem. Int. Ed. Engl. 55, 2028–2031 (2016).
Burés, J. Variable clip normalization analysis: wide graphical elucidation of absorption orders from attraction profiles. Angew. Chem. Int. Ed. Engl. 55, 16084–16087 (2016).
Shi, Y., Prieto, P. L., Zepel, T., Grunert, S. & Hein, J. E. Automated experimentation powers information subject successful chemistry. Acc. Chem. Res. 54, 546–555 (2021).
Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).
Bedard, A. C. et al. Reconfigurable strategy for automated optimization of divers chemic reactions. Science 361, 1220–1225 (2018).
Steiner, S. et al. Organic synthesis successful a modular robotic strategy driven by a chemic programming language. Science 363, eaav2211 (2019).
Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions successful empirical data. SIAM Rev. 51, 661–703 (2009).
Martinez-Carrion, A. et al. Kinetic treatments for catalyst activation and deactivation processes based connected adaptable clip normalization analysis. Angew. Chem. Int. Ed. Engl. 58, 10189–10193 (2019).
Bernacki, J. P. & Murphy, R. M. Model favoritism and mechanistic mentation of kinetic information successful macromolecule aggregation studies. Biophys. J. 96, 2871–2887 (2009).
Pfluger, P. M. & Glorius, F. Molecular instrumentality learning: the aboriginal of synthetic chemistry? Angew. Chem. Int. Ed. Engl. 59, 18860–18865 (2020).
Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemic syntheses with heavy neural networks and symbolic AI. Nature 555, 604–610 (2018).
Raissi, M., Yazdani, A. & Karniadakis, G. E. Hidden fluid mechanics: learning velocity and unit fields from travel visualizations. Science 367, 1026–1030 (2020).
Hermann, J., Schatzle, Z. & Noe, F. Deep-neural-network solution of the physics Schrodinger equation. Nat. Chem. 12, 891–897 (2020).
Shields, B. J. et al. Bayesian absorption optimization arsenic a instrumentality for chemic synthesis. Nature 590, 89–96 (2021).
Tunyasuvunakool, K. et al. Highly close macromolecule operation prediction for the quality proteome. Nature 596, 590–596 (2021).
Jumper, J. et al. Highly close macromolecule operation prediction with AlphaFold. Nature 596, 583–589 (2021).
Hueffel, J. A. et al. Accelerated dinuclear palladium catalyst recognition done unsupervised instrumentality learning. Science 374, 1134–1140 (2021).
Haitao, X., Junjie, W. & Lu, L. In Proc. 1st International Conference connected E-Business Intelligence 303–309 (Atlantis Press, 2010).
Batista, G. E. A. P. A. et al. In Advances successful Intelligent Data Analysis VI (eds Fazel Famili, A. et al.) 24–35 (Springer, 2005).
Wei, J.-M., Yuan, X.-J., Hu, Q.-H. & Wang, S.-Q. A caller measurement for evaluating classifiers. Expert Syst. Appl. 37, 3799–3809 (2010).
Alberton, A. L., Schwaab, M., Schmal, M. & Pinto, J. C. Experimental errors successful kinetic tests and its power connected the precision of estimated parameters. Part I—analysis of first-order reactions. Chem. Eng. J. 155, 816–823 (2009).
Pacheco, H., Thiengo, F., Schmal, M. & Pinto, J. C. A household of kinetic distributions for mentation of experimental fluctuations successful kinetic problems. Chem. Eng. J. 332, 303–311 (2018).
Storer, A. C., Darlison, M. G. & Cornish-Bowden, A. The quality of experimental mistake successful enzyme kinetic measurments. Biochem. J 151, 361–367 (1975).
Valkó, É. & Turányi, T. In Lindner, E., Micheletti, A. & Nunes, C. (eds) Mathematical Modelling successful Real Life Problems. Mathematics successful Industry https://doi.org/10.1007/978-3-030-50388-8_3 (2020).
Thiel, V., Wannowius, K. J., Wolff, C., Thiele, C. M. & Plenio, H. Ring-closing metathesis reactions: mentation of conversion-time data. Chem. Eur. J. 19, 16403–16414 (2013).
Joannou, M. V., Hoyt, J. M. & Chirik, P. J. Investigations into the mechanics of inter- and intramolecular iron-catalyzed [2 + 2] cycloaddition of alkenes. J. Am. Chem. Soc. 142, 5314–5330 (2020).
Knapp, S. M. M. et al. Mechanistic studies of alkene isomerization catalyzed by CCC-pincer complexes of iridium. Organometallics 33, 473–484 (2014).
Stroek, W., Keilwerth, M., Pividori, D. M., Meyer, K. & Albrecht, M. An iron-mesoionic carbene analyzable for catalytic intramolecular C-H amination utilizing integrated azides. J. Am. Chem. Soc. 143, 20157–20165 (2021).
Lehnherr, D. et al. Discovery of a photoinduced acheronian catalytic rhythm utilizing successful situ LED-NMR spectroscopy. J. Am. Chem. Soc. 140, 13843–13853 (2018).
Ludwig, J. R., Zimmerman, P. M., Gianino, J. B. & Schindler, C. S. Iron(III)-catalysed carbonyl-olefin metathesis. Nature 533, 374–379 (2016).
Albright, H. et al. Catalytic carbonyl-olefin metathesis of aliphatic ketones: iron(III) homo-dimers arsenic Lewis acidic superelectrophiles. J. Am. Chem. Soc. 141, 1690–1700 (2019).
Janse van Rensburg, W., Steynberg, P. J., Meyer, W. H., Kirk, M. M. & Forman, G. S. DFT prediction and experimental reflection of substrate-induced catalyst decomposition successful ruthenium-catalyzed olefin metathesis. J. Am. Chem. Soc. 126, 14332–14333 (2004).
van der Eide, E. F. & Piers, W. E. Mechanistic insights into the ruthenium-catalysed diene ring-closing metathesis reaction. Nat. Chem. 2, 571–576 (2010).