Regional economic potential for recycling consumer waste electronics in the United States - Nature.com

2 years ago 37

References

  1. Robinson, B. H. E-waste: an appraisal of planetary accumulation and biology impacts. Sci. Total Environ. 408, 183–191 (2009).

    Article  CAS  Google Scholar 

  2. Fiore, S., Ibanescu, D., Teodosiu, C. & Ronco, A. Improving discarded electrical and physics instrumentality absorption astatine full-scale by utilizing worldly travel investigation and beingness rhythm assessment. Sci. Total Environ. 659, 928–939 (2019).

    Article  CAS  Google Scholar 

  3. Forti, V., Balde, C. P., Kuehr, R. & Bel, G. The Global E-waste Monitor 2020: Quantities, Flows and the Circular Economy Potential (United Nations University, 2020).

  4. Advancing Sustainable Materials Management: 2014 Fact Sheet (USEPA, 2016).

  5. Awasthi, A. K., Li, J., Koh, L. & Ogunseitan, O. A. Circular system and physics waste. Nat. Electron. 2, 86–89 (2019).

    Article  Google Scholar 

  6. Zabala, A. Illegal physics discarded recycling trends. Nat. Sustain. 2, 353–354 (2019).

    Article  Google Scholar 

  7. Hsu, E., Barmak, K., West, A. C. & Park, A.-H. A. Advancements successful the attraction and processing of physics discarded with sustainability: a reappraisal of metallic extraction and betterment technologies. Green Chem. 21, 919–936 (2019).

    Article  CAS  Google Scholar 

  8. Nithya, R., Sivasankari, C. & Thirunavukkarasu, A. Electronic discarded generation, regularisation and metallic recovery: a review. Environ. Chem. Lett. 19, 1347–1368 (2021).

    Article  CAS  Google Scholar 

  9. Sun, R. et al. Bioaccumulation of abbreviated concatenation chlorinated paraffins successful a emblematic freshwater nutrient web contaminated by e-waste successful South China: bioaccumulation factors, insubstantial distribution, and trophic transfer. Environ. Pollut. 222, 165–174 (2017).

    Article  CAS  Google Scholar 

  10. Kyere, V. N. et al. Contamination and wellness hazard appraisal of vulnerability to dense metals successful soils from informal e-waste recycling tract successful Ghana. Emerg. Sci. J. 2, 428–436 (2018).

    Article  Google Scholar 

  11. Purushothaman, M., Inamdar, M. G. & Muthunarayanan, V. Socio-economic interaction of the e-waste contamination successful India. Mater. Today Proc. 37, 280–283 (2021).

    Article  Google Scholar 

  12. Palmieri, R., Bonifazi, G. & Serranti, S. Recycling-oriented characterization of integrative frames and printed circuit boards from mobile phones by physics and chemic imaging. Waste Manage. (Oxf.) 34, 2120–2130 (2014).

    Article  CAS  Google Scholar 

  13. Ghodrat, M., Rhamdhani, M. A., Brooks, G., Masood, S. & Corder, G. Techno economical investigation of physics discarded processing done achromatic copper smelting route. J. Clean. Prod. 126, 178–190 (2016).

    Article  CAS  Google Scholar 

  14. Diaz, L. A. & Lister, T. E. Economic valuation of an electrochemical process for the betterment of metals from physics waste. Waste Manage. (Oxf.) 74, 384–392 (2018).

    Article  CAS  Google Scholar 

  15. Patil, T. A. & Patil, S. T. Techno-economic feasibility of recycling e-waste to retrieve precious metals. Int. J. Adv. Sci. Tech. Res 7, 214–225 (2015).

    Google Scholar 

  16. Islam, M. T. & Huda, N. Material travel investigation (MFA) arsenic a strategical instrumentality successful e-waste management: applications, trends and aboriginal directions. J. Environ. Manage. 244, 344–361 (2019).

    Article  Google Scholar 

  17. De Meester, S., Nachtergaele, P., Debaveye, S., Vos, P. & Dewulf, J. Using worldly travel investigation and beingness rhythm appraisal successful determination support: a lawsuit survey connected WEEE valorization successful Belgium. Resour. Conserv. Recycl. 142, 1–9 (2019).

    Article  Google Scholar 

  18. Islam, M. T. & Huda, N. E-waste successful Australia: procreation estimation and untapped worldly betterment and gross potential. J. Clean. Prod. 237, 117787 (2019).

    Article  Google Scholar 

  19. Electronic Products Generation and Recycling successful the United States, 2013 and 2014, Office of Resource Conservation and Recovery (USEPA, 2016).

  20. Duan, H., Miller, T. R., Gregory, J., Kirchain, R. & Linnell, J. Quantitative Characterization of Domestic and Transboundary Flows of Used Electronics: Analysis of Generation, Collection, and Export successful the United States (the StEP Initiative, 2013).

  21. Althaf, S., Babbitt, C. W. & Chen, R. The improvement of user physics discarded successful the United States. J. Ind. Ecol. 25, 693–706 (2021).

    Article  Google Scholar 

  22. Duman, G. M., Kongar, E. & Gupta, S. M. Estimation of physics discarded utilizing optimized multivariate grey models. Waste Manage. (Oxf.) 95, 241–249 (2019).

    Article  Google Scholar 

  23. Golev, A., Corder, G. D. & Rhamdhani, M. A. Estimating flows and metallic betterment values of discarded printed circuit boards successful Australian e-waste. Miner. Eng. 137, 171–176 (2019).

    Article  CAS  Google Scholar 

  24. Golev, A., Schmeda-Lopez, D. R., Smart, S. K., Corder, G. D. & McFarland, E. W. Where adjacent connected e-waste successful Australia? Waste Manage. (Oxf.) 58, 348–358 (2016).

    Article  Google Scholar 

  25. Babbitt, C. W., Madaka, H., Althaf, S., Kasulaitis, B. & Ryen, E. G. Disassembly-based measure of materials information for user physics products. Sci. Data 7, 251 (2020).

    Article  Google Scholar 

  26. Historical Population Change Data (1910–2020) (US Census Bureau, accessed 1 July 2021); https://www.census.gov/data/tables/time-series/dec/popchange-data-text.html

  27. 2020 RECS Survey Data (US Energy Information Administration, accessed 4 July 2022); https://www.eia.gov/consumption/residential/data/2020/

  28. 2018 CBECS Survey Data (US Energy Information Administration, accessed 1 July 2022); https://www.eia.gov/consumption/commercial/data/2018/index.php?view=microdata

  29. Ghimire, H. & Ariya, P. A. E-wastes: bridging the cognition gaps successful planetary accumulation budgets, composition, recycling and sustainability implications. Sustain. Chem. 1, 154–182 (2020).

    Article  Google Scholar 

  30. Tabelin, C. B. et al. Copper and captious metals accumulation from porphyry ores and e-wastes: a reappraisal of assets availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resour. Conserv. Recycl. 170, 105610 (2021).

    Article  CAS  Google Scholar 

  31. Peng, P. & Park, A.-H. A. Supercritical CO2-induced alteration of a polymer–metal matrix and selective extraction of invaluable metals from discarded printed circuit boards. Green Chem. 22, 7080–7092 (2020).

    Article  CAS  Google Scholar 

  32. Kaya, M. Recovery of metals and nonmetals from physics discarded by carnal and chemic recycling processes. Waste Manage. (Oxf.) 57, 64–90 (2016).

    Article  CAS  Google Scholar 

  33. Wang, H. et al. Recovery of discarded printed circuit boards done pyrometallurgical processing: a review. Resour. Conserv. Recycl. 126, 209–218 (2017).

    Article  Google Scholar 

  34. Certified Electronics Recyclers (United States Environmental Protection Agency, accessed 24 February 2020); https://www.epa.gov/smm-electronics/certified-electronics-recyclers

  35. Minerals Yearbook—Gold (USGS, 2021).

  36. Priya, A. & Hait, S. Comprehensive characterization of printed circuit boards of assorted end-of-life electrical and physics instrumentality for beneficiation investigation. Waste Manage. (Oxf.) 75, 103–123 (2018).

    Article  Google Scholar 

  37. Chen, Y. et al. Selective betterment of precious metals done photocatalysis. Nat. Sustain. 4, 618–626 (2021).

    Article  Google Scholar 

  38. Uekert, T., Pichler, C. M., Schubert, T. & Reisner, E. Solar-driven reforming of coagulated discarded for a sustainable future. Nat. Sustain. 4, 383–391 (2021).

    Article  Google Scholar 

  39. Işıldar, A., Rene, E. R., van Hullebusch, E. D. & Lens, P. N. L. Electronic discarded arsenic a secondary root of captious metals: absorption and betterment technologies. Resour. Conserv. Recycl. 135, 296–312 (2018).

    Article  Google Scholar 

  40. Jones, R. S. & Fleischer, M. Gold successful Minerals and the Composition of Native Gold 2330–5703 (US Department of the Interior, Geological Survey, 1969).

  41. Riise, B. successful Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies (eds Chen, X. et al.) 295–305 (Springer Nature, 2020).

  42. Heller, M. C., Mazor, M. H. & Keoleian, G. A. Plastics successful the US: toward a worldly travel characterization of production, markets and extremity of life. Environ. Res. Lett. 15, 094034 (2020).

    Article  CAS  Google Scholar 

  43. Chien, Y.-C., Paul Wang, H., Lin, K.-S., Huang, Y. J. & Yang, Y. W. Fate of bromine successful pyrolysis of printed circuit committee wastes. Chemosphere 40, 383–387 (2000).

    Article  CAS  Google Scholar 

  44. Dushyantha, N. et al. The communicative of uncommon world elements (REEs): occurrences, planetary distribution, genesis, geology, mineralogy and planetary production. Ore Geol. Rev. 122, 103521 (2020).

    Article  Google Scholar 

  45. Godoy León, M. F., Matos, C. T., Georgitzikis, K., Mathieux, F. & Dewulf, J. Dewulf, J. Material strategy analysis: functional and nonfunctional cobalt successful the EU, 2012–2016. J. Ind. Ecol. 26, 1277–1293 (2022).

    Article  Google Scholar 

  46. January 2021 FastFacts Historical Sales Data (Consumer Technology Association, accessed 19 September 2021); https://shop.cta.tech/collections/research

  47. Müller, E., Hilty, L. M., Widmer, R., Schluep, M. & Faulstich, M. Modeling metallic stocks and flows: a reappraisal of dynamic worldly travel investigation methods. Environ. Sci. Technol. 48, 2102–2113 (2014).

    Article  Google Scholar 

  48. Althaf, S., Babbitt, C. W. & Chen, R. Forecasting physics discarded flows for effectual circular system planning. Resour. Conserv. Recycl. 151, 104362 (2019).

    Article  Google Scholar 

  49. Liu, X., Tanaka, M. & Matsui, Y. Generation magnitude prediction and worldly travel investigation of physics waste: a lawsuit survey successful Beijing, China. Waste Manage. Res. 24, 434–445 (2006).

    Article  Google Scholar 

  50. Gu, Y., Wu, Y., Xu, M., Mu, X. & Zuo, T. Waste electrical and physics instrumentality (WEEE) recycling for a sustainable assets proviso successful the electronics manufacture successful China. J. Clean. Prod. 127, 331–338 (2016).

    Article  Google Scholar 

  51. Forti, V., Baldé, K. & Kuehr, R. E-waste Statistics: Guidelines connected Classifications, Reporting and Indicators (United Nations Univ., 2018).

  52. Harmonized System (HS) Codes (International Trade Administration, accessed 6 July 2021); https://www.trade.gov/harmonized-system-hs-codes#:~:text=The%20United%20States%20uses%20a,Census%20Bureau%27s%20Foreign%20Trade%20Division

  53. Data (US Census Bureau, accessed 31 January 2021); https://www.census.gov/data.html

  54. Active Mines and Mineral Processing Plants successful the United States successful 2003 (US Geological Survey, 2005).

  55. Custom Data Package (Mining Data Online, accessed 24 February 2021); https://miningdataonline.com/property/list.aspx?vw=3

  56. Sheaffer, K. N. Gold Data Sheet—Mineral Commodity Summaries 2020, 70–71 (USGS, 2020).

  57. Find an R2 Certified Facility (Sustainable Electronics Recycling International, accessed 1 April 2021); https://sustainableelectronics.org/find-an-r2-certified-facility/

  58. Smelter and Refiner List (Apple Inc., accessed 3 January 2021); https://www.apple.com/supplier-responsibility/pdf/Apple-Smelter-and-Refiner-List.pdf

  59. List of the Smelters oregon Refiners Identified successful Konica Minolta’s Supply Chain Which Were Known by RMI (as of March 31, 2020) (Konica Minolta, accessed 3 January 2021); https://www.konicaminolta.com/about/csr/csr/suppliers/pdf/smelters.pdf

  60. Kasper, A. C. & Veit, H. M. Gold betterment from printed circuit boards of mobile phones scraps utilizing a leaching solution alternate to cyanide. Braz. J. Chem. Eng. 35, 931–942 (2018).

    Article  CAS  Google Scholar 

Download references

Read Entire Article