References
Robinson, B. H. E-waste: an appraisal of planetary accumulation and biology impacts. Sci. Total Environ. 408, 183–191 (2009).
Fiore, S., Ibanescu, D., Teodosiu, C. & Ronco, A. Improving discarded electrical and physics instrumentality absorption astatine full-scale by utilizing worldly travel investigation and beingness rhythm assessment. Sci. Total Environ. 659, 928–939 (2019).
Forti, V., Balde, C. P., Kuehr, R. & Bel, G. The Global E-waste Monitor 2020: Quantities, Flows and the Circular Economy Potential (United Nations University, 2020).
Advancing Sustainable Materials Management: 2014 Fact Sheet (USEPA, 2016).
Awasthi, A. K., Li, J., Koh, L. & Ogunseitan, O. A. Circular system and physics waste. Nat. Electron. 2, 86–89 (2019).
Zabala, A. Illegal physics discarded recycling trends. Nat. Sustain. 2, 353–354 (2019).
Hsu, E., Barmak, K., West, A. C. & Park, A.-H. A. Advancements successful the attraction and processing of physics discarded with sustainability: a reappraisal of metallic extraction and betterment technologies. Green Chem. 21, 919–936 (2019).
Nithya, R., Sivasankari, C. & Thirunavukkarasu, A. Electronic discarded generation, regularisation and metallic recovery: a review. Environ. Chem. Lett. 19, 1347–1368 (2021).
Sun, R. et al. Bioaccumulation of abbreviated concatenation chlorinated paraffins successful a emblematic freshwater nutrient web contaminated by e-waste successful South China: bioaccumulation factors, insubstantial distribution, and trophic transfer. Environ. Pollut. 222, 165–174 (2017).
Kyere, V. N. et al. Contamination and wellness hazard appraisal of vulnerability to dense metals successful soils from informal e-waste recycling tract successful Ghana. Emerg. Sci. J. 2, 428–436 (2018).
Purushothaman, M., Inamdar, M. G. & Muthunarayanan, V. Socio-economic interaction of the e-waste contamination successful India. Mater. Today Proc. 37, 280–283 (2021).
Palmieri, R., Bonifazi, G. & Serranti, S. Recycling-oriented characterization of integrative frames and printed circuit boards from mobile phones by physics and chemic imaging. Waste Manage. (Oxf.) 34, 2120–2130 (2014).
Ghodrat, M., Rhamdhani, M. A., Brooks, G., Masood, S. & Corder, G. Techno economical investigation of physics discarded processing done achromatic copper smelting route. J. Clean. Prod. 126, 178–190 (2016).
Diaz, L. A. & Lister, T. E. Economic valuation of an electrochemical process for the betterment of metals from physics waste. Waste Manage. (Oxf.) 74, 384–392 (2018).
Patil, T. A. & Patil, S. T. Techno-economic feasibility of recycling e-waste to retrieve precious metals. Int. J. Adv. Sci. Tech. Res 7, 214–225 (2015).
Islam, M. T. & Huda, N. Material travel investigation (MFA) arsenic a strategical instrumentality successful e-waste management: applications, trends and aboriginal directions. J. Environ. Manage. 244, 344–361 (2019).
De Meester, S., Nachtergaele, P., Debaveye, S., Vos, P. & Dewulf, J. Using worldly travel investigation and beingness rhythm appraisal successful determination support: a lawsuit survey connected WEEE valorization successful Belgium. Resour. Conserv. Recycl. 142, 1–9 (2019).
Islam, M. T. & Huda, N. E-waste successful Australia: procreation estimation and untapped worldly betterment and gross potential. J. Clean. Prod. 237, 117787 (2019).
Electronic Products Generation and Recycling successful the United States, 2013 and 2014, Office of Resource Conservation and Recovery (USEPA, 2016).
Duan, H., Miller, T. R., Gregory, J., Kirchain, R. & Linnell, J. Quantitative Characterization of Domestic and Transboundary Flows of Used Electronics: Analysis of Generation, Collection, and Export successful the United States (the StEP Initiative, 2013).
Althaf, S., Babbitt, C. W. & Chen, R. The improvement of user physics discarded successful the United States. J. Ind. Ecol. 25, 693–706 (2021).
Duman, G. M., Kongar, E. & Gupta, S. M. Estimation of physics discarded utilizing optimized multivariate grey models. Waste Manage. (Oxf.) 95, 241–249 (2019).
Golev, A., Corder, G. D. & Rhamdhani, M. A. Estimating flows and metallic betterment values of discarded printed circuit boards successful Australian e-waste. Miner. Eng. 137, 171–176 (2019).
Golev, A., Schmeda-Lopez, D. R., Smart, S. K., Corder, G. D. & McFarland, E. W. Where adjacent connected e-waste successful Australia? Waste Manage. (Oxf.) 58, 348–358 (2016).
Babbitt, C. W., Madaka, H., Althaf, S., Kasulaitis, B. & Ryen, E. G. Disassembly-based measure of materials information for user physics products. Sci. Data 7, 251 (2020).
Historical Population Change Data (1910–2020) (US Census Bureau, accessed 1 July 2021); https://www.census.gov/data/tables/time-series/dec/popchange-data-text.html
2020 RECS Survey Data (US Energy Information Administration, accessed 4 July 2022); https://www.eia.gov/consumption/residential/data/2020/
2018 CBECS Survey Data (US Energy Information Administration, accessed 1 July 2022); https://www.eia.gov/consumption/commercial/data/2018/index.php?view=microdata
Ghimire, H. & Ariya, P. A. E-wastes: bridging the cognition gaps successful planetary accumulation budgets, composition, recycling and sustainability implications. Sustain. Chem. 1, 154–182 (2020).
Tabelin, C. B. et al. Copper and captious metals accumulation from porphyry ores and e-wastes: a reappraisal of assets availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resour. Conserv. Recycl. 170, 105610 (2021).
Peng, P. & Park, A.-H. A. Supercritical CO2-induced alteration of a polymer–metal matrix and selective extraction of invaluable metals from discarded printed circuit boards. Green Chem. 22, 7080–7092 (2020).
Kaya, M. Recovery of metals and nonmetals from physics discarded by carnal and chemic recycling processes. Waste Manage. (Oxf.) 57, 64–90 (2016).
Wang, H. et al. Recovery of discarded printed circuit boards done pyrometallurgical processing: a review. Resour. Conserv. Recycl. 126, 209–218 (2017).
Certified Electronics Recyclers (United States Environmental Protection Agency, accessed 24 February 2020); https://www.epa.gov/smm-electronics/certified-electronics-recyclers
Minerals Yearbook—Gold (USGS, 2021).
Priya, A. & Hait, S. Comprehensive characterization of printed circuit boards of assorted end-of-life electrical and physics instrumentality for beneficiation investigation. Waste Manage. (Oxf.) 75, 103–123 (2018).
Chen, Y. et al. Selective betterment of precious metals done photocatalysis. Nat. Sustain. 4, 618–626 (2021).
Uekert, T., Pichler, C. M., Schubert, T. & Reisner, E. Solar-driven reforming of coagulated discarded for a sustainable future. Nat. Sustain. 4, 383–391 (2021).
Işıldar, A., Rene, E. R., van Hullebusch, E. D. & Lens, P. N. L. Electronic discarded arsenic a secondary root of captious metals: absorption and betterment technologies. Resour. Conserv. Recycl. 135, 296–312 (2018).
Jones, R. S. & Fleischer, M. Gold successful Minerals and the Composition of Native Gold 2330–5703 (US Department of the Interior, Geological Survey, 1969).
Riise, B. successful Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies (eds Chen, X. et al.) 295–305 (Springer Nature, 2020).
Heller, M. C., Mazor, M. H. & Keoleian, G. A. Plastics successful the US: toward a worldly travel characterization of production, markets and extremity of life. Environ. Res. Lett. 15, 094034 (2020).
Chien, Y.-C., Paul Wang, H., Lin, K.-S., Huang, Y. J. & Yang, Y. W. Fate of bromine successful pyrolysis of printed circuit committee wastes. Chemosphere 40, 383–387 (2000).
Dushyantha, N. et al. The communicative of uncommon world elements (REEs): occurrences, planetary distribution, genesis, geology, mineralogy and planetary production. Ore Geol. Rev. 122, 103521 (2020).
Godoy León, M. F., Matos, C. T., Georgitzikis, K., Mathieux, F. & Dewulf, J. Dewulf, J. Material strategy analysis: functional and nonfunctional cobalt successful the EU, 2012–2016. J. Ind. Ecol. 26, 1277–1293 (2022).
January 2021 FastFacts Historical Sales Data (Consumer Technology Association, accessed 19 September 2021); https://shop.cta.tech/collections/research
Müller, E., Hilty, L. M., Widmer, R., Schluep, M. & Faulstich, M. Modeling metallic stocks and flows: a reappraisal of dynamic worldly travel investigation methods. Environ. Sci. Technol. 48, 2102–2113 (2014).
Althaf, S., Babbitt, C. W. & Chen, R. Forecasting physics discarded flows for effectual circular system planning. Resour. Conserv. Recycl. 151, 104362 (2019).
Liu, X., Tanaka, M. & Matsui, Y. Generation magnitude prediction and worldly travel investigation of physics waste: a lawsuit survey successful Beijing, China. Waste Manage. Res. 24, 434–445 (2006).
Gu, Y., Wu, Y., Xu, M., Mu, X. & Zuo, T. Waste electrical and physics instrumentality (WEEE) recycling for a sustainable assets proviso successful the electronics manufacture successful China. J. Clean. Prod. 127, 331–338 (2016).
Forti, V., Baldé, K. & Kuehr, R. E-waste Statistics: Guidelines connected Classifications, Reporting and Indicators (United Nations Univ., 2018).
Harmonized System (HS) Codes (International Trade Administration, accessed 6 July 2021); https://www.trade.gov/harmonized-system-hs-codes#:~:text=The%20United%20States%20uses%20a,Census%20Bureau%27s%20Foreign%20Trade%20Division
Data (US Census Bureau, accessed 31 January 2021); https://www.census.gov/data.html
Active Mines and Mineral Processing Plants successful the United States successful 2003 (US Geological Survey, 2005).
Custom Data Package (Mining Data Online, accessed 24 February 2021); https://miningdataonline.com/property/list.aspx?vw=3
Sheaffer, K. N. Gold Data Sheet—Mineral Commodity Summaries 2020, 70–71 (USGS, 2020).
Find an R2 Certified Facility (Sustainable Electronics Recycling International, accessed 1 April 2021); https://sustainableelectronics.org/find-an-r2-certified-facility/
Smelter and Refiner List (Apple Inc., accessed 3 January 2021); https://www.apple.com/supplier-responsibility/pdf/Apple-Smelter-and-Refiner-List.pdf
List of the Smelters oregon Refiners Identified successful Konica Minolta’s Supply Chain Which Were Known by RMI (as of March 31, 2020) (Konica Minolta, accessed 3 January 2021); https://www.konicaminolta.com/about/csr/csr/suppliers/pdf/smelters.pdf
Kasper, A. C. & Veit, H. M. Gold betterment from printed circuit boards of mobile phones scraps utilizing a leaching solution alternate to cyanide. Braz. J. Chem. Eng. 35, 931–942 (2018).