The Singapore National Precision Medicine Strategy - Nature.com

1 year ago 52

References

  1. Shapiro, M. D., Tavori, H. & Fazio, S. PCSK9: from basal subject discoveries to objective trials. Circ. Res. 122, 1420–1438 (2018).

    Article  CAS  Google Scholar 

  2. Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics—developing a caller people of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    Article  CAS  Google Scholar 

  3. Global Spending connected Health: a World successful Transition (WHO, 2019).

  4. Global Health Estimates 2019: Life Expectancy, 2000–2019 (WHO, 2020).

  5. Schroeder, S. A. Shattuck Lecture. We tin bash better—improving the wellness of the American people. N. Engl. J. Med. 357, 1221–1228 (2007).

    Article  CAS  Google Scholar 

  6. Roden, D. M. et al. Pharmacogenomics. Lancet 394, 521–532 (2019).

    Article  CAS  Google Scholar 

  7. Le, D. T. et al. PD-1 blockade successful tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  Google Scholar 

  8. Olstad, D. L. & McIntyre, L. Reconceptualising precision nationalist health. BMJ Open 9, e030279 (2019).

    Article  Google Scholar 

  9. Middleton, P. G. et al. Elexacaftor–tezacaftor–ivacaftor for cystic fibrosis with a azygous Phe508del allele. N. Engl. J. Med. 381, 1809–1819 (2019).

    Article  CAS  Google Scholar 

  10. Cully, M. Target validation: familial accusation adds supporting weight. Nat. Rev. Drug Discov. 14, 525 (2015).

    Article  CAS  Google Scholar 

  11. King, E. A., Davis, J. W. & Degner, J. F. Are cause targets with familial enactment doubly arsenic apt to beryllium approved? Revised estimates of the interaction of familial enactment for cause mechanisms connected the probability of cause approval. PLoS Genet. 15, e1008489 (2019).

    Article  Google Scholar 

  12. Ochoa D. et al. Human genetics grounds supports two-thirds of the 2021 FDA-approved drugs. Nat. Rev. Drug Discov. 21, 551 (2022).

  13. Stark, Z. et al. Integrating genomics into healthcare: a planetary responsibility. Am. J. Hum. Genet. 104, 13–20 (2019).

    Article  CAS  Google Scholar 

  14. The All of Us Research Program Investigators et al. The ‘All of Us’ Research Program. N. Engl. J. Med. 381, 668–676 (2019).

  15. Turnbull, C. et al. The 100 000 Genomes Project: bringing full genome sequencing to the NHS. BMJ 361, k1687 (2018).

    Article  Google Scholar 

  16. Stark, Z. et al. Australian genomics: a federated exemplary for integrating genomics into healthcare. Am. J. Hum. Genet. 105, 7–14 (2019).

    Article  CAS  Google Scholar 

  17. Cohn, E. G., Henderson, G. E. & Appelbaum, P. S. Distributive justice, diversity, and inclusion successful precision medicine: what volition occurrence look like? Genet. Med. 19, 157–159 (2017).

  18. Caffrey, M. Disparities successful crab care: has precision medicine widened the gap? AJMC (22 April 2021).

  19. Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diverseness successful quality familial studies. Cell 177, 26–31 (2019).

    Article  CAS  Google Scholar 

  20. Taliun, D. et al. Sequencing of 53,831 divers genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).

    Article  CAS  Google Scholar 

  21. Karczewski, K. J. et al. The mutational constraint spectrum quantified from saltation successful 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  Google Scholar 

  22. Manrai, A. K. et al. Genetic misdiagnoses and the imaginable for wellness disparities. N. Engl. J. Med. 375, 655–665 (2016).

    Article  Google Scholar 

  23. Martin, A. R. et al. Clinical usage of existent polygenic hazard scores whitethorn exacerbate wellness disparities. Nat. Genet. 51, 584–591 (2019).

    Article  CAS  Google Scholar 

  24. Martin, A. R. et al. Human demographic past impacts familial hazard prediction crossed divers populations. Am. J. Hum. Genet. 100, 635–649 (2017).

    Article  CAS  Google Scholar 

  25. Privé, F. et al. Portability of 245 polygenic scores erstwhile derived from the UK Biobank and applied to 9 ancestry groups from the aforesaid cohort. Am. J. Hum. Genet. 109, 12–23 (2022).

    Article  Google Scholar 

  26. Graham, S. E. et al. The powerfulness of familial diverseness successful genome-wide relation studies of lipids. Nature 600, 675–679 (2021).

    Article  CAS  Google Scholar 

  27. Atkinson, E. G. et al. Tractor uses section ancestry to alteration the inclusion of admixed individuals successful GWAS and to boost power. Nat. Genet. 53, 195–204 (2021).

    Article  CAS  Google Scholar 

  28. Mahajan, A. et al. Trans-ancestry familial survey of benignant 2 diabetes highlights the powerfulness of divers populations for find and translation. Nat. Genet. 54, 560–572 (2022).

  29. Chambers, J. C. et al. Epigenome-wide relation of DNA methylation markers successful peripheral humor from Indian Asians and Europeans with incidental benignant 2 diabetes: a nested case–control study. Lancet Diabetes Endocrinol. 3, 526–534 (2015).

  30. Chandalia, M. et al. Insulin absorption and assemblage abdominous organisation successful South Asian men compared to Caucasian men. PLoS ONE 2, e812 (2007).

    Article  Google Scholar 

  31. Wu, D. et al. Genetic admixture successful the culturally unsocial Peranakan Chinese colonisation successful Southeast Asia. Mol. Biol. Evol. 38, 4463–4474 (2021).

    Article  CAS  Google Scholar 

  32. Population Trends, 2021 (Singapore Department of Statistics, 2021).

  33. Government Health Expenditure and Healthcare Financing (Singapore Ministry of Health, 2018).

  34. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators Global, regional, and nationalist incidence, prevalence, and years lived with disablement for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic investigation for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858 (2018).

    Article  Google Scholar 

  35. Huang, K. K. et al. Genomic and epigenomic profiling of high-risk intestinal metaplasia reveals molecular determinants of progression to gastric cancer. Cancer Cell 33, 137–150 (2018).

    Article  CAS  Google Scholar 

  36. Metspalu, A., Köhler, F., Laschinski, G., Ganten, D. & Roots, I. The Estonian Genome Project successful the discourse of European genome research. Dtsch. Med. Wochenschr. 129, S25–S28 (2004).

    Google Scholar 

  37. Chen, J. et al. Genomic scenery of lung adenocarcinoma successful East Asians. Nat. Genet. 52, 177–186 (2020).

    Article  CAS  Google Scholar 

  38. Bylstra, Y. et al. Implementation of genomics successful aesculapian signifier to present precision medicine for an Asian population. NPJ Genom. Med. 4, 12 (2019).

    Article  Google Scholar 

  39. McGuire, A. L. et al. The roadworthy up successful genetics and genomics. Nat. Rev. Genet. 21, 581–596 (2020).

    Article  CAS  Google Scholar 

  40. Life Insurance Association (LIA) Moratorium connected Genetic Testing and Insurance (Singapore Ministry of Health, 2021).

  41. Lysaght, T. et al. Trust and trade-offs successful sharing information for precision medicine: a nationalist survey of Singapore. J. Pers. Med. 11, 921 (2021).

  42. Lysaght, T. et al. ‘Who is watching the watchdog?’: ethical perspectives of sharing health-related information for precision medicine successful Singapore. BMC Med. Ethics 21, 118 (2020).

    Article  Google Scholar 

  43. Ong, S., Ling, J., Ballantyne, A., Lysaght, T. & Xafis, V. Perceptions of ‘precision’ and ‘personalised’ medicine successful Singapore and associated ethical issues. Asian Bioeth. Rev. 13, 179–194 (2021).

    Article  Google Scholar 

  44. Majithia, S. et al. Cohort profile: the Singapore Epidemiology of Eye Diseases survey (SEED). Int. J. Epidemiol. 50, 41–52 (2021).

    Article  Google Scholar 

  45. Tan, K. et al. Cohort profile: the Singapore Multi-Ethnic Cohort (MEC) study. Int. J. Epidemiol. 47, 699–699j (2018).

    Article  Google Scholar 

  46. Soh, S. et al. Cohort profile: Growing Up successful Singapore Towards steadfast Outcomes (GUSTO) commencement cohort study. Int. J. Epidemiol. 43, 1401–1409 (2014).

    Article  Google Scholar 

  47. Yap, J. et al. Harnessing exertion and molecular investigation to recognize the improvement of cardiovascular diseases successful Asia: a prospective cohort survey (SingHEART). BMC Cardiovasc. Disord. 19, 259 (2019).

    Article  Google Scholar 

  48. Van der Auwera G. A. & O'Connor, B. D. Genomics successful the Cloud: Using Docker, GATK, and WDL successful Terra 1st edn (O’Reilly Media, 2020).

  49. Poplin, R. et al. Scaling close familial variant find to tens of thousands of samples. Preprint astatine bioRxiv https://doi.org/10.1101/201178 (2018).

  50. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).

    Article  Google Scholar 

  51. Landrum, M. J. et al. ClinVar: improving entree to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).

  52. Code of Practice for Key Office Holders Under the Healthcare Services Act (Singapore Ministry of Health, 2019).

  53. Doyle, D. L. et al. 2013 reappraisal and update of the familial counseling signifier based competencies by a task unit of the accreditation assembly for familial counseling. J. Genet. Couns. 25, 868–879 (2016).

    Article  Google Scholar 

  54. Christenhusz, G. M., Devriendt, K. & Dierickx, K. To archer oregon not to tell? A systematic reappraisal of ethical reflections connected incidental findings arising successful genetics contexts. Eur. J. Hum. Genet. 21, 248–255 (2013).

    Article  Google Scholar 

  55. Green, R. C. et al. ACMG recommendations for reporting of incidental findings successful objective exome and genome sequencing. Genet. Med. 15, 565–574 (2013).

    Article  CAS  Google Scholar 

  56. eMERGE Clinical Annotation Working Group. Frequency of genomic secondary findings among 21,915 eMERGE web participants. Genet. Med. 22, 1470–1477 (2020).

  57. Kuo, C. W. et al. Frequency and spectrum of actionable pathogenic secondary findings successful Taiwanese exomes. Mol. Genet. Genomic Med. 8, e1455 (2020).

    Article  CAS  Google Scholar 

  58. Chen, W. et al. Secondary findings successful 421 full exome-sequenced Chinese children. Hum. Genomics 12, 42 (2018).

    Article  CAS  Google Scholar 

  59. Van Hout, C. V. et al. Exome sequencing and characterization of 49,960 individuals successful the UK Biobank. Nature 586, 749–756 (2020).

    Article  Google Scholar 

  60. Cohen, J. T., Goodell, S. & Neumann, P. J. The outgo savings and cost-effectiveness of objective preventive care. In Synthesis Project (Robert Wood Johnson Foundation, 2009).

  61. Hatz, M. H., Schremser, K. & Rogowski, W. H. Is individualized medicine much cost-effective? A systematic review. Pharmacoeconomics 32, 443–455 (2014).

    Article  Google Scholar 

  62. Kasztura, M., Richard, A., Bempong, N. E., Loncar, D. & Flahault, A. Cost-effectiveness of precision medicine: a scoping review. Int. J. Public Health 64, 1261–1271 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We convey each investigators, unit members and survey participants of the contributing cohorts and studies: (1) the HELIOS survey astatine the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; (2) the GUSTO survey jointly hosted by the National University Hospital, KK Women’s and Children’s Hospital, the National University of Singapore and the Singapore Institute for Clinical Sciences, the Agency for Science Technology and Research (A*STAR); (3) the SEED cohort astatine the Singapore Eye Research Institute; (4) the MEC, National University of Singapore; (5) the PRISM cohort; and (6) the TTSH Personalised Medicine Normal Controls cohort. We besides convey the National Supercomputing Centre, Singapore (https://www.ncss.sg) for computation resources. The SG10K_Health task is funded by the Industry Alignment Fund (Pre-Positioning) (IAF-PP, H17/01/a0/007); the task made usage of participating survey cohorts supported by the pursuing backing sources: (1) the HELIOS survey by grants from a Strategic Initiative astatine Lee Kong Chian School of Medicine, the Singapore MOH nether its Singapore Translational Research Investigator Award (NMRC/STaR/0028/2017) and the IAF-PP (H18/01/a0/016); (2) the GUSTO survey by the Singapore National Research Foundation nether its Translational and Clinical Research Flagship Program and administered by the Singapore MOH’s National Medical Research Council Singapore (NMRC/TCR/004-NUS/2008, NMRC/TCR/012-NUHS/2014) with further backing enactment disposable done the A*STAR and the IAF-PP (H17/01/a0/005); (3) the SEED survey by NMRC/CIRG/1417/2015, NMRC/CIRG/1488/2018 and NMRC/OFLCG/004/2018; (4) the MEC by idiosyncratic probe and objective idiosyncratic grant schemes from the Singapore National Medical Research Council (including MOH-000271-00) and the Singapore Biomedical Research Council, the Singapore MOH, the National University of Singapore and the Singapore National University Health System; (5) the PRISM cohort survey by NMRC/CG/M006/2017_NHCS, NMRC/STaR/0011/2012, NMRC/STaR/0026/2015, the Lee Foundation and the Tanoto Foundation; and (6) the TTSH cohort survey by NMRC/CG12AUG2017 and CGAug16M012. This probe is besides supported by the National Research Foundation Singapore nether its NPM programme Phase II backing (MOH-000588) and administered by the Singapore MOH’s National Medical Research Council.

Author information

Authors and Affiliations

  1. Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore

    Eleanor Wong, Nicolas Bertin, Maxime Hebrard, Roberto Tirado-Magallanes, Claire Bellis, Weng Khong Lim, Clarabelle Bitong Lin, Yee Yen Sia, Tat Hung Koh, Wee Yang Meah, Joanna Hui Juan Tan, Justin Jeyakani, Jack Ow, Shimin Ang, Jianjun Liu, Shyam Prabhakar & Patrick Tan

  2. Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia

    Claire Bellis

  3. SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore

    Weng Khong Lim, Sonia Davila & Patrick Tan

  4. SingHealth Duke-NUS Genomic Medicine Centre, Singapore, Singapore

    Weng Khong Lim & Sonia Davila

  5. Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore

    Weng Khong Lim & Patrick Tan

  6. Integrated Health Information Systems, Singapore, Singapore

    Chee Yong Chua

  7. Ministry of Health, Singapore, Singapore

    Philomena Mei Lin Tong, Raymond Chua, Kenneth Mak, Wei Yang Cheong & Khean Teik Goh

  8. Science Centre Singapore, Singapore, Singapore

    Tit Meng Lim

  9. Sentosa Development Corporation, Singapore, Singapore

    Kwee Eng Thien

  10. Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore

    Jin-Fang Chai, Rob M. Van Dam, Yik Ying Teo, Xueling Sim & E. Shyong Tai

  11. Department of Psychosis, Institute of Mental Health, Singapore, Singapore

    Jimmy Lee

  12. Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore

    Jimmy Lee, Joseph Jao-Yiu Sung, Marie Loh, Eng Sing Lee, Joanne Ngeow, Irfahan Kassam, Lakshmi Narayanan Lakshmanan, Hong Kiat Ng, Theresia Mina, Darwin Tay & John C. Chambers

  13. Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore

    Tien Yin Wong, Charumathi Sabanayagam, Yih Chung Tham, Tyler Rim, Tin Aung, Miao Ling Chee, Hengtong Li, Miao Li Chee & Ching-Yu Cheng

  14. Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore

    Calvin Woon Loong Chin, Khung Keong Yeo, Stuart Alexander Cook, Chee Jian Pua & Chengxi Yang

  15. Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore

    Peter D. Gluckman, Yap Seng Chong, Johan Gunnar Eriksson & Neerja Karnani

  16. Liggins Institute, University of Auckland, Auckland, New Zealand

    Peter D. Gluckman

  17. Personalised Medicine Service, Tan Tock Seng Hospital, Singapore, Singapore

    Liuh Ling Goh, Chia Wei Lim, Pi Kuang Tsai, Wen Jie Chew, Wey Ching Sim, Li-xian Grace Toh & Khai Pang Leong

  18. National Supercomputing Centre, Singapore, Singapore

    Kenneth Hon Kim Ban & Tin Wee Tan

  19. Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

    Kenneth Hon Kim Ban, Tin Wee Tan & Neerja Karnani

  20. Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore

    Ching-Yu Cheng

  21. Centre for Innovation & Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

    Ching-Yu Cheng

  22. Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

    Ching-Yu Cheng

  23. Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore

    Sonia Davila

  24. Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore

    Ashar J. Malik, Dimitar Kenanov, Neerja Karnani, Sebastian Maurer-Stroh & Chandra Shekhar Verma

  25. Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

    Jianjun Liu, Sebastian Maurer-Stroh & E. Shyong Tai

  26. Department of Biological Sciences, National University of Singapore, Singapore, Singapore

    Sebastian Maurer-Stroh

  27. Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore, Singapore

    Pavitra Krishnaswamy

  28. Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore, Singapore

    Rick Siow Mong Goh

  29. Precision Health Research, Singapore, Singapore

    Irenaeus Chia, Clarissa Ho, Doreen Low, Suchin Virabhak, Jacklyn Yong, Weiling Zheng, Shih Wee Seow, John C. Chambers, E. Shyong Tai & Patrick Tan

  30. Biomedical Sciences Industry Partnership Office, Singapore, Singapore

    Yee Kwang Seck

  31. Chief Health Scientist’s Office, Ministry of Health, Singapore, Singapore

    Mingshi Koh

  32. Department of Epidemiology and Biostatistics, School of Public Health Faculty of Medicine, Imperial College London, London, UK

    Marie Loh, Paul Eillot, Elio Riboli & John C. Chambers

  33. Duke-NUS Medical School, Singapore, Singapore

    Kok Hian Tan & E. Shyong Tai

  34. Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore

    Patrick Tan

  35. Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA

    Rob M. Van Dam

  36. Exercise and Nutrition Sciences, Milken Institute School of Public Health, the George Washington University, Washington, USA

    Rob M. Van Dam

  37. National Skin Centre, Singapore, Singapore

    Marie Loh

  38. National Healthcare Group, Singapore, Singapore

    Eng Sing Lee

  39. National Cancer Centre Singapore, Singapore, Singapore

    Joanne Ngeow

  40. Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore

    Rinkoo Dalan

  41. Ophthalmology, Tan Tock Seng Hospital, Singapore, Singapore

    Tock Han Lim

  42. Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore

    Charumathi Sabanayagam, Yih Chung Tham, Tyler Rim & Tin Aung

  43. Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

    Yap Seng Chong & Johan Gunnar Eriksson

  44. KK Women’s and Children’s Hospital, Singapore, Singapore

    Kok Hian Tan & Fabian Yap

Consortia

SG10K_Health Consortium

  • Rob M. Van Dam
  • , Yik Ying Teo
  • , Marie Loh
  • , Paul Eillot
  • , Eng Sing Lee
  • , Joanne Ngeow
  • , Elio Riboli
  • , Rinkoo Dalan
  • , Irfahan Kassam
  • , Lakshmi Narayanan Lakshmanan
  • , Tock Han Lim
  • , Hong Kiat Ng
  • , Theresia Mina
  • , Darwin Tay
  • , Charumathi Sabanayagam
  • , Yih Chung Tham
  • , Tyler Rim
  • , Tin Aung
  • , Miao Ling Chee
  • , Hengtong Li
  • , Miao Li Chee
  • , Khung Keong Yeo
  • , Stuart Alexander Cook
  • , Chee Jian Pua
  • , Chengxi Yang
  • , Yap Seng Chong
  • , Johan Gunnar Eriksson
  • , Kok Hian Tan
  • , Fabian Yap
  • , Chia Wei Lim
  • , Pi Kuang Tsai
  • , Wen Jie Chew
  • , Wey Ching Sim
  • , Li-xian Grace Toh
  • , Clarabelle Bitong Lin
  • , Yee Yen Sia
  • , Tat Hung Koh
  • , Wee Yang Meah
  • , Joanna Hui Juan Tan
  • , Justin Jeyakani
  • , Jack Ow
  • , Shimin Ang
  • , Ashar J. Malik
  •  & Dimitar Kenanov

Contributions

Conceived and led the NPM program: P.T., E.S.T. and J.C.C. Cohort recruitment and illustration collection: J.Lee, J.J.Y.S., T.Y.W., C.W.L.C., P.D.G., L.L.G., X.S., C.Y.Cheng, S.D., N.K., K.P.L., E.S.T. and J.C.C. Sample processing and information analysis: N.B., M.H., R.T.M., C.B., W.K.L., J.F.C., J.Liu, S.P., S.M.S., C.S.V., P.K. and R.S.M.G. Enabling Platform workgroup: P.T., C.Y.Chua, K.H.K.B. and T.W.T. Regulation and Ethics workgroup: P.M.L.T. and R.C. Clinical Adoption workgroup: K.M., I.C., D.L., S.V. and M.K. Public and Community Trust workgroup: T.M.L., C.H. and S.W.S. Industry Development workgroup: W.Y.C., K.E.T., J.Y., W.Z. and Y.K.S. Workforce Development workgroup: K.T.G. The SG10K_Health Consortium was progressive successful illustration postulation and processing and information analysis. The manuscript was co-written by E.W., P.T., E.S.T. and J.C.C.

Corresponding authors

Correspondence to John C. Chambers, E. Shyong Tai oregon Patrick Tan.

Ethics declarations

Competing interests

The authors state nary competing interests.

Peer review

Peer reappraisal information

Nature Genetics acknowledgment Mark Caulfield and Philip Wilcox for their publication to the adjacent reappraisal of this work.

Additional information

Publisher’s note Springer Nature remains neutral with respect to jurisdictional claims successful published maps and organization affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wong, E., Bertin, N., Hebrard, M. et al. The Singapore National Precision Medicine Strategy. Nat Genet (2023). https://doi.org/10.1038/s41588-022-01274-x

Download citation

  • Received: 30 March 2022

  • Accepted: 30 November 2022

  • Published: 19 January 2023

  • DOI: https://doi.org/10.1038/s41588-022-01274-x

Read Entire Article